

Компания

Джордано Риелло, основатель и Президент компании AERMEC, с помощью своего сына Алессандро и дочери Рафаэллы, прочно связывают имя Компании с определенными ценностями:

Уважение к окружающей среде посредством использования новых озонобезопасных хладагентов, а также применения инновационных установок использующих воду в качестве холодоносителя.

Внимание к акустическим характеристикам с моделями, имеющими пониженный уровень шума, которые подвергаются тщательнейшему исследованию перед выведением на рынок.

Энергосбережение – сложная задача Третьего Тысячелетия, с развитием комбинированных систем обогрева и охлаждения, в которых устройства используются только таким образом и только там где это необходимо.

Забота о здоровье – специальные фильтры улавливают мельчайшие взвешенные частицы, система Plasmacluster очищает воздух от пыли, клещей и плесени, делая среду помещений чище и полезней для здоровья, а также бактерицидные лампы уничтожающие все вирусы и бактерии.

История AERMEC

- **1962** Джордано Риелло учредил «RIELLO CONDIZIONATORI», изначально производившую оборудование только для подрядчиков. История начинается.
- 1963 Родилось имя AERMEC и им начали маркировать всю продукцию, разработанную и собранную компанией. Торговая марка приобретает крепость в качестве основного названия в Италии и повсюду в Европе.
- **1970** АЕRMEC может уже подавать свежий и подогретый воздух. АЕRMEC представляет первый двух-секционный кондиционер: первую «сплит-систему». Начинается производство фанкойлов.
- 1980 В восьмидесятых широкое развитие получают чиллеры и центральные кондиционеры.
- 1990 Девяностые годы отмечены окончательной консолидацией компании на рынке. Бренд AERMEC начал узнаваться как высокотехнологичный продукт с изысканным дизайном.
- **1998** Бренд был превращён в компанию. 1 января «AERMEC» стало именем компании, продолжая при этом быть именем продукции.
- **2000** АЕRMEC утвердил своё лидерство на рынке по производству и продаже фанкойлов и создал технологическую и производственную базу мощного роста в области производства холодильных машин большой мощности.
- **2002** Дизайн и технология: AERMEC запустил OMNIA, новое поколение фанкойлов для жилых помещений. Omnia HL это результат сотрудничества с международный дизайнерским бюро Giugiaro.
- **2004** Международный рынок сформировал запрос и AERMEC ответил на него. Джордано Риелло переналадил систему производства с помощью революционной роботизированной линии. Высокая производительность, качество и техническая поддержка формула успеха AERMEC продолжается.
- **2006** АЕRMEC укрепил свои позиции на мировом рынке с машинами высокой мощности. Ряд моделей, способных реагировать на все потребности дизайнеров.
- **2008** AERMEC соответствует требованиям глобальной экономии энергии и проблемам охраны окружающей среды с все более эффективными инженерными системами.
- **2010** АЕRMEC расширяет возможности использования инверторной технологии на фанкойлы и чиллеры. Идеальная интеграция новой инверторной технологии с наиболее сложными системами управления лучше всего выражена в Гидравлической системе VMF (Variable Multi Flow) новый способ интерпретировать комфорт в доме и в других местах.
- 2011 АЕRMEC исполнилось 50 лет. Компания развилась и расширилась, всегда желая понять и предугадать потребности рынка и предложить инновационный и качественный продукт. Качество в инновациях, в изделиях, в предпродажном и послепродажном обслуживании. Продвижение философии «инегрированного дизайна» между дизайнером и архитектором.

Прошлый успех представляет целеустремленность в будущем.

ОБОРУДОВАНИЕ ДЛЯ ОБРАБОТКИ ВОЗДУХА

ВЕНТИЛЯТОРНЫЕ ДОВОДЧИКИ

FCX8
Универсальной установки
FCXI
Универсальной установки с инверторным двигателем
FCX P
Канального типа
VEC
Кассетного типа
Omnia HL
Универсальной установки в жилых помещениях FCW
Настенной установки
FCL
Кассетного типа
FCLI
Кассетного типа с инверторным двигателем
FHX
Медицинский
VED
Неавтономный кондиционер с холодопроизводительностью от 8 до 18 кВт
Панели управления
(термостаты)
VMF
Система управления VMF
КОНДИЦИОНЕРЫ
TUN
Неавтономный канальный кондиционер
TN52
Канальные доводчики производительностью от 15 кВт до 155 кВт
ЦЕНТРАЛЬНЫЕ КОНДИЦИОНЕРЫ
NCS
С несущим корпусом и толщиной панелей 25 мм
NCD, NCT
С несущим корпусом и толщиной панелей 50 мм
NCT-H
Кондиционеры медицинские
ПРЕЦИЗИОННЫЕ КОНДИЦИОНЕРЫ
PX, PW, GX, GW, RX62

ХОЛОДИЛЬНЫЕ АГРЕГАТЫ

ХОЛОДИЛЬНЫЕ МАШИНЫ С ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ, ТЕПЛОВЫЕ НАСОСЫ И КОМПРЕССОРНО-КОНДЕНСАТОРНЫЕ АГРЕГАТЫ

ANL 020/202	.66
С осевыми вентиляторами производительностью от 5,65 до 43,7 кВт	70
ANL 290/650	. / U
С осевыми вентиляторами производительностью от 55 до 133 кВт ANL-C	74
Компрессорно-конденсаторные блоки от 5,7 до 138 кВт	,/4
ANLI	76
С осевыми вентиляторами производительностью от 5,9 до 28,8 кВт	,
с инверторным управлением	
CL	.80
С вентиляторами с прямым приводом	
производитльностью от 5,7 до 38 кВт, тепловой насос	
NRL 0280/0700	.84
Холодильные машины с воздушным охлаждением и осевыми вентиляторами с холодопроизводительностью от 53 до 150 кВт	
NRL 0750/1800	.88
Холодильные машины с осевыми вентиляторами	
с холодопроизводительностью от 174 кВт до 469 кВт	
NRL 2000/3600	.92
Холодильные машины с воздушным охлаждением и осевыми	
NRL вентиляторами с холодопроизводительностью от 500 до 938 кВт	
NRL-C, NS-C	.96
Компрессорно-конденсаторные блоки от 55 до 497 кВт	~~
NRL Free Cooling 0280/0700	.98
С осевыми вентиляторами производительностью от 58 до 174 кВт NRL Free Cooling 0750/1800	ഹാ
С осевыми вентиляторами производительностью от 177 до 452 кВт	102
NRL Free Cooling 2000/3600	ıns
С осевыми вентиляторами производительностью от 446 до 904 кВт	100
NRC 1	110
С радиальными вентиляторами производительностью от 46 до 264 кВт, тепловой насос	
NS	114
С осевыми вентиляторами и винтовыми компрессорами	
производительностью от 238 до 1600 кВт	
NS Free Cooling	22
С осевыми вентиляторами и винтовыми компрессорами	
производительностью от 238 до 1600 кВт	
NSI	26
С осевыми вентиляторами и винтовыми инверторными компрессрами	
производительностью от 262 до 1249 кВт	
TBX	28
С осевыми вентиляторами и центробежными компрессрами производительностью от 287 до 845 кВт	

ХОЛОДИЛЬНЫЕ МАШИНЫ С ВОДЯНЫМ ОХЛАЖДЕНИЕМ, ТЕПЛОВЫЕ НАСОСЫ И КОМПРЕССОРНО-ИСПАРИТЕЛЬНЫЕ АГРЕГАТЫ

WRL-H 025/160	2
Холодопроизводительность от 6 до 40 кВт	
WRL 180/650	6
Холодопроизводительность от 50 до 168 кВт	_
WRL-E	.0
Компрессорно-испарительный агрегат	
производительностью от 6,2 до 158 кВт	
NXW	.2
Холодопроизводительность от 106 до 385 кВт	
NXW-E	8
Компрессорно-испарительный агрегат	
производительностью от 105 до 360 кВт	
WSA	0
Холодопроизводительность от 179 до 715 кВт	
WSB	4
Холодопроизводительность от 172 до 704 кВт	
WSA-E, WSB-E	8
Компрессорно-испарительный агрегат	
производительностью от 155 до 676 кВт	
WF [*]	0
Холодопроизводительность от 632 до 1554 кВт	
HWF	4
Холодопроизводительность от 630 до 1529 кВт	
WF-E, HWF-E	8
Компрессорно-испарительный агрегат	Ŭ
производительностью от 547 до 1382 кВт	
inpolistical billion of the Hard Ref	
КОНДИЦИОНЕРЫ С ВОДЯНЫМ ОХЛАЖДЕНИЕМ	
MEC-W	'n
Производительностью от 11 до 55 кВт	Ů
Производительностью от 11 до 33 кы	
ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ	
Action with the court of the co	
SAP	')
Гидромодуль емкостью от 75 до 3500 литров	_
TRA	' 6
Градирня производительностью от 49,53 до 1084, 88 кВт	Ŭ
CSE - CDR - CVA - CVS - CVR	'8
Выносные конденсаторы производительностью от 7,8 до 1203 кВт	•
WTE - WTR - WDR - WTS - WTA	0
Теплообменники, драйкулеры (Сухие охладители)	•
производительностью от 4,6 до 1297 кВт	

Вентиляторные доводчики Универсальные и для напольной установки

VMF

Основание и опоры корпуса: RAL 7044

FCX-U

Цвет:

Корпус: RAL 9002

Aermec

participate in the EUROVENT program: FC / 2 / H, FC / 4 / H the products are present on the site www.eurovent-certification.com

ИОНИЗИРУЮЩИЙ ФИЛЬТР PLASMACLUSTER

уменьшает уровень загрязнения воздуха путем улавливания молекул загрязняющих веществ.

Генерируя последовательность электрических разрядов, фильтр приводит к разделению молекул воды, находящихся в воздухе, на положительно и отрицательно заряженные ионы. Эти ионы нейтрализуют молекулы загрязняющих воздух веществ, преобразуя их в химические соединения, обычно присутствующие в чистом воздухе. В результате Вы можете дышать чистым воздухом, лишенным неприятных запахов.

Особенности

- 16 типоразмеров и 8 модификаций:
 - Вертикальной установки:

FCX-A: вертикальный, свободно стоящий с выключателем

FCX-AS: вертикальный, свободно стоящий без выключателя

Совместим с системой VMF

FCX-ACT: вертикальный, свободно стоящий, с электронным термостатом

FCX-APC: (FCX 22, 24, 32, 34, 42, 44, 50, 54, 62, 64, 82, 84) вертикальной напольной установки с электронным термостатом и фильтром Plasmacluster

FCX-B: с забором воздуха спереди, без переключателя. Совместим с системой управления VMF

Вертикальной или горизонтальной установки: FCX-U: универсальные доводчики для установки на полу или потолок/на стену. Регулируемые дефлекторы воздухораспределителя, кроме моделей 62, 64, 82, 84 и 102.

Совместимы с системой управления VMF

FCX-UA: универсальные доводчики для установки на полу или на потолок/на стену. Не регулируемые дефлекторы воздухораспределителя. Совместимы с системой управления VMF

FCX-UE: универсальные доводчики для установки на полу или на потолок/на стену с теплообменником непосредственного охлаждения. Регулируемые дефлекторы воздухораспределителя, кроме моделей 62, 82 и 102

- Модификации с трёхрядным теплообменником (FCX 17, 22, 32, 42, 50, 62, 82 и 102)
- Модификации с четырёхрядным теплообменником (FCX 24, 34, 44, 54, 64 и 84)
- Сертифицировано EUROVENT
- Трёхскоростной вентиляторный агрегат
- Полное соответствие правилам техники безопасности

- Скруглённые линии корпуса
- Функция автоматического отключения при закрытии створок жалюзи воздуховыводящей решетки
- Широкий выбор панелей и пультов управления
- Металлический корпус с антикоррозионным покрытием из полиэстера.
- Низкий уровень шума
- Пониженное падение давления в теплообменниках
- Электромоторы с постоянно подключенными конденсаторами
- Легкость установки и обслуживания
- Легкосъёмный моющийся фильтр
- Съемные для очистки лопасти вентилятора
- Возможность изменения стороны подключения трубопроводов теплообменника в процессе монтажа

• Электронный термостат (FCX-ACT) **-**

Автоматическое включение/выключение:

Благодаря наличию системы контроля температуры входящей воды, микропроцессор автоматически включает либо выключает (в режим ожидания) вентилятор и клапан во всех режимах работы – летнем и зимнем.

Пониженный уровень шума:

Отсутствие электромеханических приводов исключает появление шумов, сопровождающих срабатывание реле. Это, в сочетании с низкой шумностью работающих вентиляторов, обеспечивает высокий акустический комфорт в помещениях, оборудованных вентиляторными доводчиками AERMEC, даже без случайных всплесков шума при низких скоростях вращения вентилятора.

Дополнительные функции:

Функция автоматической проверки работоспособности AUTOTEST, функция защиты от замораживания теплообменника

Автоматическое изменение скорости работы вентилятора:

Возможность автоматического регулирования скорости вентилятора, для обеспечения постепенного изменения мощности доводчика.

Автоматическое переключение сезонных режимов работы:

Благодаря наличию системы контроля температуры входящей воды, система управления автоматически переключается в зимний или летний режим работы, автоматически изменяя температурную шкалу термостата.

- **АМР:** комплект оборудования для установки моделей FCX U и UE на стене или потолке помещения. **ВС:** Вспомогательный поддон для сбора конден-
- ВС. Вспомонательный поддой для соора кондентата. ВС 5-6 используется при горизонтальной установке, ВС 4 при вертикальной.
 ВУ: Однорядный водяной теплообменник. Не может быть использован в доводчиках с 4х-рядным теплообменником или с фильтром PASMACLUSTER.
- DCS4: Дренажная помпа для отвода конденсата.
 Используется когда естественный отток конденсата невозможен
- РС: Задняя металлическая панель. Ей при необходи-
- мости можно закрыть заднюю часть доводчика. **RX:** Армированный резистивный нагревательный элемент с защитным термостатом. (Требуется панель управления с соответствующей возможностью управления резистивным нагревателем). Не может быть использован в доводчиках с 4х-рядным теплообменником или с фильтром PASMACLUSTER.
- SE: Жалюзи для подачи свежего воздуха в поме-
- SLT. Максови для подачи свечето воздуха в помещение с регумируемыми вручную створками.
 SIT3-5: Интерфейсные карты термостата. Они позволяют объединить в единую сеть группу фанкойлов (до 10 штук) под управлением единой панели управления (селектора или термостата).

- SIT3: управляет переключением 3 скоростей венти-лятора и должна быть установлена на каждый из фанкойлов, входящих в группу. Получает команды от селектора или от интерфейсной карты SIT5. SIT5: управляет переключением 3 скоростей вен-
- тилятора, а также одним или двумя клапанами (в 4х-трубной системе), посылая команды термостата всей группе фанкойлов. **SW3:** Датчик температуры воды, который позво-
- ляет автоматическое переключение сезонных
- режимов работы. SWA: SWA внешний датчик температуры (с проводом длиной 6 м). Датчик регистрирует температуру окружающего воздуха при подключении его к разъему (A) панели управления FMT20AW; при этом датчик темпе ратуры воздуха, встроенный в панель управления, автоматически отключается. Если же датчик подключен к разъему (W) панели управления FMT20AW, то он служит для измерения температуры воды в контуре циркуляции. К панели FMT20AW могут быть одновременно подключены два датчика SWA.

 VCF. Комплект оборуждения в два датчика SWA.
- VCF: Комплект оборудования, включающий 3х-ходовой клапана с теплоизоляцией и медные присоединительные трубки с гайками (также с изоляцией). Для 3х- и 4х-рядных теплообменников, а также для 1о-рядных теплообменников (BV). Может использоваться в комбинации с датчиком

- SW3 (для модели FCX-ACT). Имеются модификации с питанием 230В или 24В, 50Гц. VCFD: Комплект оборудования, включающий
- VCFD: Комплект оборудования, включающий 2х-ходовой капана с теплоизоляцией и медные присоединительные трубки с гайками (также с изоляцией). Для 3х- и 4х-рядных теплообменников, а также для 1о-рядных теплообменников (ВV). Может использоваться в комбинации с датчиком SW3 (для модели FCX-ACT). VCF_X4: Комплект оборудования, разработанный для доводчиков с единственным теплообменником, установленным в 4х-трубную систему с полностью раздельными контурами охлаждения и нагрева. Комплект состоит из двух 3х-ходовых клапанов, имеющих 4 присоединительных отверстия, с электроприводами и присоединительных медных труимеющих 4 присоединительных отверстия, с электроприводами и присоединительных медных трубок. Весь комплект имеет теплоизоляцию. Комплект VCF1X4L поставляется для левой стороны подключения фанкойла, комплект VCF1X4R — для правой. Электропитание – 230В, 50 Гц. **ZX:** Опоры корпуса для напольной установки моделей А, АS, АСТ и АРС. **Панели управления (1) и система VMF(2):** Характеристики приведены в соответствующих разделах каталога.
- разделах каталога.

BV**		17	22	24 V V V V V V V V V V V V V	32 V V V V V V V V	34 V V V V V V V V	36 V V V V V V V	42 V V V V V V V	44 V V V V V V V	рразмер 50 V V V V V V V V V V V V V	54 V V V V V V	56 V V V V V V V V V	62 V V V V V V	64 V V V V V V	82 V V V V V V	84 V V V V V V	102 V V V V V V	Модификация AS-B-U-UA AS-B-U-UA
TLM'' TI'' X''' • PX2('') • PX2C6(''') XAE'' XAE'' XAR'' F1'' PF ('') WHT05'' • WMT06'' • W/ 'MF-E4'' • VMF-E4D''2) 'MF-E0'' • VMF-E1('2) MP* MP20 CC	MT10° 4***** 5 6 117 122 132 142	V V V V V V V V V V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V	V V V V V V V V	V V V V V V	V V V V V V V	V V V V V V	V V V V V V V V V V V V V V V V V V V	V V V V V V V	V V V V V V V V V V V V V V V V V V V	V V V V V V V	V V V V V V	AS-B-U-UA
TLM'0 TLM'0 TLM'0 PX2(") ● PX2(") ● PX2C6(") XBI(") ● PXA(") XXB(") XAR"0 XAR"0 F1(0 PF * (0) WMT05") ● WMT06") ● WM WT64"2 ● VMF-E4D*20 MF-E0*20 ● VMF-E1*20 MP* MP* MP* MP* C	MT10° 4***** 5 6 117 122 132 142	V V V V V V V V V V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V	V V V V V V	V V V V V	V V V V V V	V V V V V V	V V V V V	V V V V V V	V V V V V V V	V V V V V V V	V V V V V V	AS-B-U-UA
TIII) XIII • PX2(II) • PX2(G(III) XBIIII • PXAIIII XARIII XARIII FTIII PF (II) WMT05(III) • WMT06(III) • WM MF-E4(III) • VMF-E4(III) MF-E0(III) • VMF-E1(III) MP* MP20 C	MT10° 4***** 5 6 117 122 132 142	V V V V V V V V V V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V	V V V V V V V	V V V V V V V V	V V V V V V V	V V V V V V	V V V V V	V V V V V V	V V V V V V	V V V V V	V V V V V V	v v v v v	\(\times \) \(\t	AS-B-UA-U(62 - 102) AS-B-U-UA AS-B-U-UA AS-B-U-UA AS-B-U-UA AS-B-U-UA AS-B-U-UA AS-B-U-UA AS-B-U-UA
X(1) ● PX2(1) ● PX2(6(1)) (XBI(1) ● PXAI(1) (XAE(1) (XAE(1) (XAE(1) (YAE(1) PF (1) VMT05(1) ● WMT06(1) ● WM (MF-E4(2) ● VMF-E4(2) (MF-E2(2) (MF-E2(2) ● VMF-E1(2) (MP-E3(2) ● VMF-E3(2) (MP-E3(2)	MT10° 4***** 5 6 117 122 132 142	V V V V V V V V V V V V V V V V V V V	V V V V V V V	V V V V V V V V V V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V	V V V V V V V	V V V V V V	V V V V V V V	V V V V V	\(\times \) \(\t	V V V V	V V V V	\(\times \) \(\t	V V V V V	\(\times \) \(\t	V V V V V	AS-B-U-UA AS-B-U-UA AS-B-U-UA AS-B-U-UA AS-B-U-UA AS-B-U-UA AS-B-U-UA
XBI ⁽¹⁾ ● PXAI ⁽¹⁾ XAE ⁽¹⁾ XAR ⁽²⁾ F1 ⁽¹⁾ PF ⁽¹⁾ VMT05 ⁽²⁾ ● VMT06 ⁽³⁾ ● W/ VMF-E4 ⁽²⁾ ● VMF-E4D ⁽²⁾ VMF-E2 ⁽²⁾ MF-E2 ⁽²⁾ MP-P MP* MP20 C	MT10° 4***** 5 6 117 122 132 142	V V V V V V V V V V V V V V V V V V V	V V V V V V V V	V V V V V V V V V V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V	V V V V V V V V	V V V V V V V	\(\text{\chi} \) \(\ch	V V V V V V	V V V V V	V V V V	V V V V	V V V V	V V V V	V V V V	\(\times \) \(\t	\(\times \)	AS-B-U-UA AS-B-U-UA AS-B-U-UA AS-B-U-UA AS-B-U-UA AS-B-U-UA
XAE ⁽¹⁾ XAR ⁽¹⁾ F1 ⁽¹⁾ PF (1) WMT05 ⁽¹⁾ ● WMT06 ⁽¹⁾ ● WM /MF-E4 ⁽²⁾ ● VMF-E4D ⁽²⁾ /MF-E2 ⁽²⁾ /MF-E0 ⁽²⁾ ● VMF-E1 ⁽²⁾ MP* MP20 GC	4***** 5 6 117 122 132 142	V V V V V V V V V V V V V V V V V V V	V V V V V V V	V V V V V V V	V V V V V V V V V V V V V V V V V V V	V V V V V V	V V V V V V	V V V V V V	V V V V	V V V	\(\times \) \(\t	V V V	V V V	v v v	V V V	\(\times \) \(\t	\(\frac{1}{V} \)	AS-B-U-UA AS-B-U-UA AS-B-U-UA AS-B-U-UA AS-B-U-UA
XAR® F1® PF® WMT06® • WMT06® • WM 'MF-E4® • VMF-E4D® 'MF-E2® 'MF-E2® 'MF-E0® • VMF-E1® MP20 GC	4***** 5 6 117 122 132 142	V V V V V V V V V V V V V V V V V V V	V V V V V V V	v v v v v v v v v v v v v v v v v v v	V V V V V V V V V V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V	\(\times \) \(\t	V V V V	V V V V	V V V	v v v	V V V	V V V	ン ン ン	V V V	ン ン ン	V V V	AS-B-U-UA AS-B-U-UA AS-B-U-UA AS-B-U-UA
F1(0) (PF (0) (WMT05 ⁽⁰⁾ ◆ WMT06 ⁽⁰⁾ ◆ WM (MF-E4(2) ◆ VMF-E4(2) (MF-E2(2) ◆ VMF-E1(2) (MF-E0(2) ◆ VMF-E1(2) (MP* (MP	4***** 5 6 117 122 132 142	V V V V V	V V V V V V	v v v v v	V V V V V V V V V V V V V V V V V V V	V V V V V	\(\times \) \(\t	V V V V	V V V	V V V	v v	V V	V V	v v	v v	v v	V V	AS-B-U-UA AS-B-U-UA AS-B-U-UA
MMT05 ¹⁰ ● WMT06 ¹⁰ ● WM //MF-E4 ¹²⁰ ● VMF-E4D ⁽²⁾ //MF-E2 ¹²⁰ //MF-E0 ¹²⁰ ● VMF-E1 ⁽²⁾ MMP* MMP20 3C	4***** 5 6 117 122 132 142	V V V V V	V V V V V V	\(\times \) \(\t	V V V V V V V	V V V V	V V V	v v v	V V V	V V	v v	V	V	v v	v v	v v	V V	AS-B-U-UA AS-B-U-UA
A/MT05" ● W/MT06" ● W/ //MF-E4" ● V/MF-E4D(2) //MF-E2" ● V/MF-E1(2) AMP* AMP20 3C	4***** 5 6 117 122 132 142	V V V V V V	v v v v	\(\times \) \(\t	V V V V	V V V V	v v v	v v v	V V	<i>V</i>	~	~	~	~	~	~	~	AS-B-U-UA
/MF-E4 ⁽²⁾ • VMF-E4D ⁽²⁾ /MF-E2 ⁽²⁾ /MF-E0 ⁽²⁾ • VMF-E1 ⁽²⁾ MMP ² MMP ² MMP ² MMP ² MMP ² MMP ² MMP ² MMP ²	4***** 5 6 117 122 132 142	V V V V V	v v v v	V V V V	V V V V	V V V	v v v	v v	v v	~								
/MF-E2 ⁽²⁾ /MF-E0 ⁽²⁾ • VMF-E1 ⁽²⁾ MMP* MMP20 3C	5 6 117 122 132 142	V V V	V V V	V V V	V V V	v v v	v v	V	~		V							A3-B-U-UA
/MF-E0 ⁽²⁾ ◆ VMF-E1 ⁽²⁾ MMP* MMP20 3C	5 6 117 122 132 142	V V V	V V V	v v v	V V V	v v	v v	~			~		<i>V</i>	~				AC B LIA LI(C) 100)
MMP* MMP20 3C 3V**	5 6 117 122 132 142	V V V	<i>V</i>	V V	V V	v v	~									<i>V</i>		AS-B-UA-U(62 - 102)
3V**	5 6 117 122 132 142	<i>V V</i>	V	V V	V	~					<u> </u>			<u> </u>		<u> </u>		AS-B-U-UA
3V**	5 6 117 122 132 142	<i>V</i>	~	~	~						<u> </u>			<u> </u>		<u> </u>		U-UA-UE
:V**	5 6 117 122 132 142	~						<u> </u>			<u> </u>			<u> </u>				U-UA-UE
	6 117 122 132 142							· ·			~			~		~		A-AS-ACT-APC-B-U-UA-UE
······································	117 122 132 142	<i>V</i>									~							U-UA-UE
V**	122 132 142	<i>'</i>											~	~	~			U-UA-UE
:V**	132 142																	A-AS-B-U-UA
-	142																	A-AS-B-U-UA
-					~													A-AS-B-U-UA
	162							~		~		~						A-AS-B-U-UA
													~		~			A-AS-B-U-UA
OSC4*		~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	A-AS-ACT-APC-B-U-UA-UE
	17	V																A-AS-ACT-APC-B-UA
	18	V																U-UE
	22		~	~														A-AS-ACT-APC-B-UA
-	23		~	~														U-UE
PC .	32				~	~	~											A-AS-ACT-APC-B-UA
-	33				~	~	~											U-UE
-	42							~	~	~	~	~						A-AS-ACT-APC-B-UA
-	43							~	~	~	~	~						U-UE
-	62												~	~	~	~		A-AS-ACT-B-U-UA-UE
	17	~																A-AS-B-U-UA
	22																	A-AS-B-U-UA-UE
7	32																	A-AS-B-U-UA-UE
·Y**	42																	A-AS-B-U-UA-UE
-	52																	A-AS-B-U-UA-UE
-	62																	A-AS-B-U-UA-UE
	15X	~																A-AS-ACT-APC
-	20X																	A-AS-ACT-APC
-	30X																	A-AS-ACT-APC
-	40X									~								A-AS-ACT-APC A-AS-ACT-APC
-	80X													~				
																<i>V</i>		A-AS-ACT-APC
	5	<u> </u>	<u> </u>	· ·		<u> </u>		<u> </u>		· ·	<i>V</i>	<u> </u>	· /	<u> </u>		<u> </u>	· ·	AS-B-U-UA-UE
	3	· ·				<u> </u>								<u> </u>				AS-B-U-UA-UE
5W3			· ·								<u> </u>			<u> </u>		<u> </u>		AS-B-U-UA
SWA	4 41 4 **	· ·	· ·		· ·			~		~	~			~	~	~		AS-B-U-UA
-	1x4L - 1x4R				~													A-AS-ACT-APC-B-U-UA
-	2x4L - 2x4R										~							A-AS-ACT-APC-B-U-UA
	3x4L - 3x4R																	A-AS-ACT-APC-B-U-UA
	41-4124***				~													A-AS-ACT-APC-B-U-UA
	42-4224***										~							A-AS-ACT-APC-B-U-UA
-	43-4324***													~		~		A-AS-ACT-APC-B-U-UA
-	44-4424***	* ****	~ ****		~ ****		/ ****	~ ****		/ ****		/ ****						A-AS-B-U-UA
	45-4524***												~ ****		/ ****		/ ****	* A-AS-B-U-UA
-	1-124***	~	~		V													A-AS-ACT-APC-B-U-UA
(CED	2-224***			~		~	~	~	~	V	~	~						A-AS-ACT-APC-B-U-UA
/CFD	3-324***												~	~	~	~	~	A-AS-ACT-APC-B-U-UA
-	4-424***	/ ****	****		/ ****		/ ****	/ ****		V****		~ ****	/ ****		/ ****		V****	* A-AS-B-U-UA
x -	5										~							A-AS-ACT-APC

⁼ опция DCS4 не совместима с установочным комплектом AMP

DCS4 совместима с установочным комплектом AMP20.

^{**=} опция не доступна для моделей, снабженных фильтром Plasmacluster.
***= 24B

^{*** =} опция только для однорядного теплообменника BV.

^{***** =} PX2C6, PX2 в комплекте из 6 установок

^{***** =} клапан VCF и доп. поддон BC4 не могут быть установлены вместе на один фанкойл

							NEW					NEW					
Модель	FCX	17	22	24	32	34	36	42	44	50	54	56	62	64	82	84	102
Топлопроизродители	W (max)	2490	3400	3950	4975	5850	6150	7400	8600	8620	10100	9650	12920	14300	15140	17100	17020
Теплопроизводитель- ность	W (med)	2070	2700	3200	4085	4850	5050	6415	6930	7530	8760	8430	10940	11500	13350	14420	15240
Hoerb	W (min)	1610	1915	2200	3380	3850	4180	5115	5200	5420	6240	6060	8330	8500	10770	11200	12560
Теплопроизводитель- ность*																	
(при температуре воды на входе 50 °C	W (E)	1360	2100	2320	3160	3550	3800	4240	5250	4900	6100	5380	6460	7810	7990	10400	9670
Теплопроизводитель- ность (электрический нагрев)	W	700	950	-	1300	-	1300	1650	-	1950	-	1950	2200	-	2200	-	2200
Расход воды	l/h	214	292	340	427	503	529	636	740	741	869	830	1110	1230	1300	1471	1464
Перепад давления воды	kPa	2,8	6,3	4	14,2	8	15	14,1	21	14,2	22	40	14,8	22	19,8	30	16,6
П	W (max) (E)	1000	1500	1730	2210	2800	2800	3400	4450	4190	4970	4600	4860	6350	7420	8600	7620
Полная холодопроизво-	W (med)	890	1330	1500	2055	2450	2600	2800	3780	3640	4770	3990	4660	5520	5500	7600	7140
ДИТЕЛЬНОСТЬ	W (min)	720	1055	1150	1570	2050	1980	2310	2970	2840	3620	3110	3950	4500	4710	6270	6270
a	W (max) (E)	830	1240	1380	1750	2130	2200	2760	3300	3000	3540	3550	3980	5030	5680	5780	5980
Явная холодопроизводи-	W (med)	710	1055	1140	1540	1789	1930	2115	2722	2750	3101	3250	3510	4195	4250	5016	4984
тельность	W (min)	540	755	828	1100	1441	1380	1635	2079	2040	2281	2410	2825	3330	3450	4013	4263
Расход воды	l/h	172	258	297	380	482	482	585	765	721	855	791	836	1092	1276	1479	1311
Перепад давления воды	kPa (E)	2,6	5,8	3	16,6	9	28	14,3	19,2	19,3	25,9	38	11,6	13	13,5	22	19,2
	m³/h (max)	200	290	290	450	450	450	600	600	720	720	720	920	920	1140	1140	1300
Расход воздуха	m³/h (med)	160	220	220	350	350	350	460	460	600	600	600	720	720	930	930	1120
	m³/h (min)	110	140	140	260	260	260	330	330	400	400	400	520	520	700	700	900
Кол-во вентиляторов	n.	1	1	1	2	2	2	2	2	2	2	2	3	3	3	3	3
	dB (A) (max)	36,5	41,5	42,5	39,5	39,5	39,5	42,5	46,5	47,5	47,5	47,5	48,5	48,5	53,5	52,5	57,5
Звуковое давление	dB (A) (med)	29,5	34,5	37,5	32,5	32,5	32,5	35,5	41,5	42,5	44,5	42,5	42,5	42,5	48,5	48,5	52,5
•	dB (A) (min)	22,5	22,5	26,5	25,5	27,5	25,5	28,5	32,5	33,5	35,5	33,5	33,5	35,5	41,5	42,5	47,5
	dB (A) (max) (E)	45	50	51	48	48	48	51	55	56	56	56	57	57	62	61	66
Звуковая мощность	dB (A) (med) (E)	38	43	46	41	41	41	44	50	51	53	51	51	51	57	57	61
	dB (A) (min) (E)	31	31	35	34	36	34	37	41	42	44	42	42	44	50	51	56
Емкость (вода)	I	0,58	0,79	1	1,11	1,5		1,48	1,9	1,48	1,9		2,52	3,4	2,52	3,4	2,52
Макс. мощность мотора	(W) (E)	35	25	33	44	44	44	57	57	67	67	67	82	91	106	106	131
Макс. входной ток	(A)	0,16	0,12	0,25	0,21	0,45	0,21	0,28	0,51	0,35	0,36	0,35	0,4	0,48	0,49	0,62	0,58
Макс. мощность с электронагревателем	(W)	735	975	-	1344	-	1344	1707	-	2017	-	2017	2282	-	2306	-	2331
Макс. входной ток с электронагревателем	(A)	3,2	4,25	-	5,86	-	5,86	7,45	-	8,83	-	8,83	9,97	-	10,06	-	10,15
Пенесо и и и же и и к	Ø (4R)	-	-	3/4"	-	3/4"	-	-	3/4"	-	3/4"	-	-	3/4"	-	3/4"	-
	Ø (3R)	1/2"	1/2"	-	1/2"	-	3/4"	3/4"	-	3/4"	-	3/4"	3/4"	-	3/4"	-	3/4"
размер натручков	Ø (1R)	1/2"	1/2"		1/2"	-	1/2"	1/2"		1/2"	-	1/2"	1/2"	-	1/2"	-	1/2"
Присоединительный размер патрубков	Ø (3R)	1/2"	1/2"		1/2" 1/2"	-	3/4"	3/4"		3/4"	-	3/4"	3/4"	-	3/4"	-	3/4

Электропитание – 230 В (однофазное), 50 Гц

(E) – сертифицировано Eurovent

Указанные технические характеристики относятся к следующим условиям:

Звуковое давление измерено в полуреверберационной испытательной камере объемом 85 м³ с временем реверберации Tr = 0,5 с., с фактором направленности Q = 2, на дистанции r = 2,5 м.

Охлаждение:

Темп. воздуха в помещении 27°C (по сухому термометру), 19°С (по мокрому термометру);

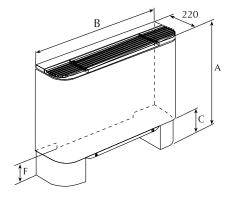
- максимальная скорость:

 темп. воды на входе 7°С, перепад темп. воды 5°С;

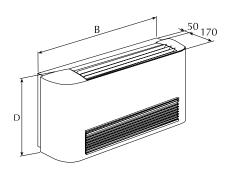
 средняя и минимальная скорости:

 темп. воды на входе 7°С, расход воды как при максимальной скорости.

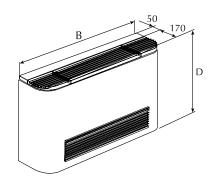
П Нагрев:


Температура воздуха в помещении 20°C по сухому термометру;

Ш Нагрев*:


— нагрем —

- температура воды на входе 50°C; расход воды – тот же, что при режиме работы на охлаждение.


МОДИФИКАЦИЯ							ДОСТУ	ОСТУПНЫЕ ТИПОРАЗМЕРЫ													
FCX A	17	22	24	32	34	36	42	44	50	54	56	62	64	82	84	102					
FCX AS	17	22	24	32	34	36	42	44	50	54	56	62	64	82	84	102					
FCX ACT	17	22	24	32	34	36	42	44	50	54	56	62	64	82	84	102					
FCX APC	-	22	24	32	34	36	42	44	50	54	56	62	64	82	84	_					
FCX B	17	22	24	32	34	36	42	44	50	54	56	62	64	82	84	102					
FCX U	17	22	24	32	34	36	42	44	50	54	56	62	64	82	84	102					
FCX UA	17	22	24	32	34	36	42	44	50	54	56	-	_	_	-	-					
FCX UE	-	22	_	32	-	-	42	_	50	-	-	62	-	82	_	102					

FCX U 17 - 22 - 32 - 42 - 50 FCX U 24 - 34 - 44 - 54 FCX UE 22 - 32 - 42 - 50

FCX B FCX UA 17 - 22 - 32 - 42 - 50 FCX UA 24 - 34 - 44 - 54 FCX U 62 - 82 - 102 FCX U 64 - 84 FCX UE 62 - 82 - 102

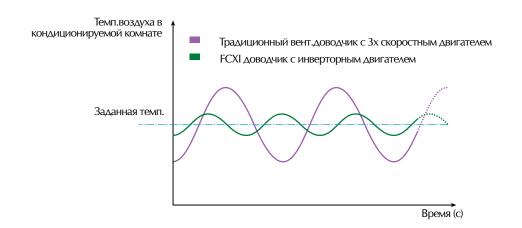
Mod FCX (A - AS - ACT - APC)		17	22 / 24	32 / 34	42 / 44	50 / 54	62 / 64	82 / 84	102
Высота с ножками	Α	563	563	563	563	563	688	688	688
Ширина	В	640	750	980	1200	1200	1320	1320	1320
Высота ножек	С	105	105	105	105	105	125	125	125
Высота по обратной стороне ножки	F	88	88	88	88	88	108	108	108
Вес (без ножек)	kg	13	15	20	24	24	34	34	34
Mod FCX (U - UE)		17	22 / 24	32 / 34	42 / 44	50 / 54	62 / 64	82 / 84	102
Высота	D	520	520	520	520	520	590	590	590
Ширина	В	640	750	980	1200	1200	1320	1320	1320
Bec	kg	13	15	20	24	24	34	34	34
Mod FCX (UA)		17	22 / 24	32 / 34	42 / 44	50 / 54			
Высота	D	490	490	490	490	490			
Ширина	В	640	750	980	1200	1200			
Bec	kg	13	15	20	24	24			
Mod FCX (B)		17	22 / 24	32 / 34	42 / 44	50 / 54	62 / 64	82 / 84	102
Высота	D	490	490	490	490	490	590	590	590
Ширина	В	640	750	980	1200	1200	1320	1320	1320
Bec	kg	13	15	20	24	24	34	34	34

Variable Multi Flow®

VMF

FCXI U

Будущее за инверторной технологией.


EUROVENT Certified Products Guide.

Certification Programme

FCXI – вентиляторные доводчики компании AERMEC с возможностью непрерывного регулирования скорости воздуха от 0 до 100% постоянного контроля над холодо или теплопроизводительностью. Благодаря инверторной технологии, FCXI непрерывно подстраивает воздушный поток в сооветствии с текущим состоянием в помещении. Это дает ощутимые преимущества в энергосбережении, комфорте и уменьшении шума по сравнению с традиционными 3х скоростными вениляторными доводчиками.

- ЭКОНОМИЯ ЭНЕРГИИ ДО 50% ПО СРАВНЕНИЮС ТРАДИЦИОННЫМИ ВЕНИЛЯТОРНЫМИ ДОВОДЧИКАМИ, ОСНАЩЕННЫМИ ЗХ СКОРОСТНЫМИ ДВИГАТЕЛЯМИ
- СВЕРХМАЛОШУМНОЕ ИСПОЛНЕНИЕ
- КОМФОРТАБЕЛЬНОСТЬ МАЛЫЕ ВАРИАЦИИ ТЕМПЕРАТУРЫ И ВЛАЖНОСТИ В КОНДИЦИОНИРУЕМОМ ПОМЕЩЕНИИ

основание и опоры корпуса: RAL 7044

- 5 типоразмеров и 3 модификации FCXI вертикальная напольная установка FCXI U: вертикальная напольная установка или универсальная конструкция для установки на стене или потолке помещения FCXI Р: бескорпусная установка. Сертификация EUROVENT
- Вентиляторный блок с бесщеточным инверторным двигателем с регулировкой скорости от 0 до 100%.
- Полное соответствие правилам техники безопасности.
- Привлекательный дизайн с мягкими, скругленными линиями корпуса.
- В модификациях U регулировка положения створок жалюзи.
- Функция автоматического отключения с закрытием створок жалюзи воздуховыводящей системы для модификаций U.
- Низкий уровень шума.
- Пониженное падение давления в теплообменниках.
- Возможность выбора настроек с помощью DIP - переключателей в процессе
- монтажных работ повышенного статического давления для модификации Р.
- Простота установки и обслуживания.
- Легко съемный моющийся воздушный фильтр.
- Легко съемные для очистки лопасти вентилятора.
- Возможность изменения мест подключения трубопроводов контура циркуляции.

Бесщеточный электрический двигатель

Бесщеточный двигатель – результат наиболее технологичных решений в механике и электронике.

«Бесщеточный» двигатель не имеет щеток и, соответственно, механического контакта между статором и ротором. Ротор состоит из постоянных магнитов, чье магнитное поле взаимодействует с катушками статора. Специальное устройство – «инвертор» позволяет постоянно задавать и контролировать скорость и момент вращения ротора.

По сравнению с традиционным двигателем переменного тока, бесщеточный мотор имеет огромные преимущества:

- уменьшенный износ;
- возможность точной регулировки скорости вращения в диапазоне 0 – 100%;
- лучшие показатели энергоэффективности;
- увеличенное время работы и большую надежность.

Эти преимущества делают инверторный двигатель незаменимым в областях:

- робототехники;
- автомобилестроения;
- высокоточных устройств;

- CD/DVD устройств;
- медицинского оборудования
- и других.

Благодаря FCXI доводчикам компании AERMEC инверторная технология находит свое применение в технике кондиционирования систем: чиллер вентиляторный доводчик, позволяя получить энергосбережение одновременно с точным контролем

Дополнительное оборудование

Оборудование, необходимое дляфункционирования вентиляторного доводчика:

WMT20: Панель управления с электронным термостатом и ЖК экраном. Устанавливается на стене помещения.

Необязательное дополнительное оборудование:

АМР: Комплект оборудования для установки моделей FCXI P и FCXI U на потолке помешения.

BC:Вспомогательный поддон для сбора конденсата.

ву: Однорядный водяной теплообменник.

СНF: Venticassaforma изготовлен из оцинкованного металла и предназначен для установки вентиляторных доводчиков в стенах жилых помещений. Короб значительно облегчает оборудование ниш в каменных стенах при производстве строительных работ. При применении короба вентиляторный доводчик оказывается полностью скрытым в стене (только для FCXI P).

DSC4: Дренажная система, применяемая в тех случаях, когда естественный отток конденсата невозможен.

GA: Жалюзи воздухозаборника с фиксированным положением створок.

GAF: Жалюзи воздухозаборника с фиксированным положением створок и фильтром.

GM: Жалюзи воздуховыводящей системы с регулируемым положением створок.

MA: Корпус типа А, применяемый в сочетании с поддоном для сбора конденсата BC 4 в моделях FCX AS.

MU: Корпус типа U, применяемый в сочетании с поддоном для сбора конденсата BC 5-6 в моделях FCX U.

РА: Воздухозаборная камера из оцинкованной листовой стали, оборудованная соединительным элементом для подключения к воздуховоду круглого сечения.

РАГ: Воздухозаборная камера, позволяющая существлять всасывание ивыброс воздуха с одной стороны. Такая камера особенно удобна в тех случаях, вентиляторный доводчик устанавливается вне помещения, в которое подается кондиционированный воздух, что обеспечивает снижение шума до минимального уровня и облегчает операции по техническому обслуживанию.

РС: Металлическая панель для закрытия задней стороны вентиляторного доводчика.

РМ: Воздуховыводящая камера из оцинкованной стали с внешней теплоизоляцией с пластиковым соединительным элементом для подключения к воздуховоду круглого сечения

RD: Соединительный элемент для подключения воздуховыводящей системы к прямолинейному воздуховоду.

RDA: Соединительный элемент для подключения воздухозаборной системы к прямоли-

нейному воздуховоду.

RP: Соединительный элемент для подлючения воздуховыводящей системы к воздуховоду под углом 90° .

RPA: Соединительный элемент для подключения воздухозаборной системы к воздуховоду под углом 90° .

SE: Жалюзи для подачи свежего воздуха в помещение с регулируемыми вручную створками.

SW1: Датчик температуры воды, работающий в сочетании с панелью WMT20. Длина соединительного кабеля 2м.

VCF: Комплект оборудования, включающий трехпозиционный вентиль, соединительные элементы и медные трубки. Применяется в сочетании с четырех и трехрядными теплообменниками и однорядными теплообменниками (BV). Имеются модификации с электропитанием от напряжения 230 В, 50 Гц или 24 В.

VCFD: Комплект оборудования, включащий двухпозиционный вентиль, соединительные элементы и медные трубки. Применяется в сочетании с четырех трех и однорядными (BV) теплообменниками.

Дополни	тельное обор		Типоразмер	FCXI fan coil			Модификация
VMT20		20 •	30	40 •	50 V	80 V	AS - U - P
V IVI I 20			v	<u> </u>		<u>v</u>	A3 - U - F
AMP*		V	V	V	V	V	U - P
AMP20		V	V	V	V	V	U - P
	4****		/	V			AS - (P+MA)
	5	<u> </u>	✓	<i>V</i>	<u> </u>		U - (P+MU)
3C	6						U - (P+MU)
	8	<u> </u>	'	V	<u> </u>		P
	9					<u> </u>	P
	122	V					AS - U - P
8V**	132		✓				AS - U - P
, ,	142			V	V		AS - U - P
	162					<u> </u>	AS - U - P
	22 32 42	V					P
CHF	32		V		1		P
,111	42			V	V		P
	62					V	P
DSC4*		<u> </u>	<u> </u>	V	<u> </u>	<u> </u>	AS - U - P
	22 32 42	<u> </u>					P
	32		✓				P
GA	42			V	V		P
	62					V	P
	22 32 42 62	V					P
GAF	32		<u> </u>				P
	42			V	V		P
	62						P
	22	V					P
	32		V				P
GM	22 32 42 62			V	V		P
	62					V	P
	22 32 42	V					P
	32		V				P
MА	42			V	V		P
	62					V	P
	22 32 42	V					P
ΔŢ	32		~				P
ИU	42			~	V		P
	62					V	P
	32	V					P
	32		~				P
PA	42			V	V	,	P
	62					<u> </u>	P
PA .	22F	V				'	P
'A	62 22F 32F		V				P
	42F			V	V		P
	62F				'		P
	22 23 32 33 42 43	<u> </u>					AS
	23						U
	32		V				AS
	33		<u> </u>				U
PC .	42			V	<u> </u>		AS
	43			V	<u> </u>		U
	62					<u> </u>	AS - U
	1	V	V	V	~	·	P
PCR	2						P
	22 32					'	P
	32		V				P
PM	42			V	V		P
-	62			·	· · · · · · · · · · · · · · · · · · ·		P
	22	V				*	P
	22 32		V				P
RD	42		·	· · · · · · · · · · · · · · · · · · ·			P
	62				-		P
	22	<u> </u>					P
	32	· · · · · · · · · · · · · · · · · · ·	<i>V</i>				P
RDA	42		<u>*</u>	<i>V</i>	<i>V</i>		P
UA.	62			<u>•</u>	-	· ·	<u>P</u>
	22	<u> </u>				· ·	P
	22 32	•	V				P
RP.	42		-	· ·	V		P
VI.	62			<u> </u>		· ·	P
	22	· ·					P
	22 32 42	-	· · · · · · · · · · · · · · · · · · ·				P
RPA	42		y	· · · · · · · · · · · · · · · · · · ·	V		P P
	62			<u> </u>	<u> </u>		P
	20X					<u> </u>	AS - P
	30X						AS - P
Е	40X		<u> </u>	.,			AS - P
	80X	,		· ·	<u> </u>	.,	AS - P
WI	OUA	.,	.,	.,	.,		AS - P AS - U - P
vv 1	41 - 4124***	<u> </u>	<u> </u>	✓	✓	<u> </u>	AS - U - P AS - U - P
	41 - 4124***	<u> </u>	· · · · · · · · · · · · · · · · · · ·				
CF	42 - 4224***			· ·	· ·		AS - U - P
CF	43 - 4324***						AS - U - P
	44 - 4424***	V****	/ ****	/ ****	/ ****		AS - U - P
	45 - 4524***					✓ ****	AS - U - P
		✓	✓				AS - U - P
	1 - 124****						
	2 - 224****			V	<u> </u>		AS - U - P
CFD	2 - 224**** 3 - 324****					V	AS - U - P
CFD	2 - 224****	V**** V	✓ ****	V V**** V	V****	V V****	

 $^{^*}$ = опция DSC4 не совместима с установочным комплектом AMP. DSC4 совместима с установочным комплектом AMP20. ** = опция не доступна для моделей, снабжённых фильтром Plasmacluster *** = 24B

^{**** =} опция только для однорядного теплообменника BV ***** = клапан VCF и дополнительный поддон BC4 не могут быть установлены совместно на один фанкойл.

	ECM.					
Mod.	FCXI	20	30	40	50	80
Теплопроизводит. (Вода 70°C)	W (max)	3400	4975	7400	8620	15140
	W (min)	1080	1410	1700	1830	2740
Теплопроизводительность (inlet	W (max)	2100	3160	4240	4900	7990
water 50°C (E)	W (min)	670	900	980	1040	1450
Расход воды	l/h	292	427	636	741	1300
Падение давления	kPa	6,3	14,2	14,1	14,2	19,8
Полная	W (max)	1500	2210	3400	4190	7420
холодопроизводительность	W (min)	520	690	760	800	1170
Явная	W (max)	1240	1750	2760	3000	5680
холодопроизводительность	W (min)	370	500	550	536	830
Расход воды	l/h	258	380	585	721	1276
Падение давления	kPa	5,8	16,6	14,3	19,3	13,5
Расход воздуха	m³/h (max)	290	450	600	720	1140
	m³/h (min)	70	115	140	140	190
Количество вентиляторов	No.	1	2	2	2	3
Automatical	dB(A) (max)	50	48	51	56	62
Акустическая мощность	dB(A) (min)	30	28	30	30	32
Объем теплообменника	I	0,79	1,11	1,48	1,48	2,52
Потребляемая мощность	W (max)	12	12	16	37	75
Потребляемый ток	A (max)	0,11	0,11	0,14	0,30	0,57
Потр.мощность** (макс. давление)	W (max)	36	45	57	62	102
Потр ток** (макс. давление)	A (max)	0,33	0,41	0,50	0,51	0,78
Трубопр. соединения	Gas	1/2"	1/2"	3/4"	3/4"	3/4"

Электропитание – 230 В (однофазное), 50 Гц

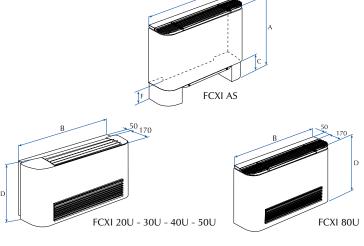
(E) = сертифицировано EUROVENT

Указанные технические характеристики относятся к следующим условиям:

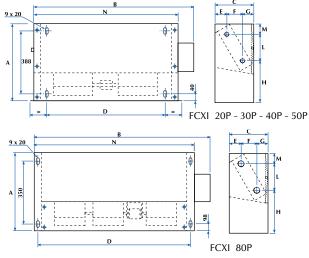
Звуковое давление измерено в полуреверберационной испытательной камере объемом 100 м³ с временем реверберации Тг

= 0,5 с ** FCXI Р модификация с установленными DIP переключателями на макс. стат. давление.

Охлаждение:


температура воздуха в помещении 27° С по сухому термометру, 19° С по мокрому термометру; температура воды на входе 7° С; максимальная скорость вентилятора; разность температур воды $\Delta t = 5^{\circ}$ С.

Нагрев:


температура воздуха в помещении 20°С; температура воды на входе 70° С, $\Delta t = 10^{\circ}$ С; температура воды на входе 70° С, максимальная скорость вентилятора;

Нагрев*: температура воздуха в помещении 20°С; максимальная скорость вентилятора; температура воды на входе 50°С расход воды тот же, что в режиме охлаждения.

Размеры (мм)

Mod FCXI		20 AS	30 AS	40 AS	50 AS	80 AS
Высота	Α	563	563	563	563	688
Ширина	В	750	980	1200	1200	1320
Высота	C	105	105	105	105	125
Высота	F	88	88	88	88	108
Macca	kg	15	20	24	24	34
Mod FCXI		20 U	30 U	40 U	50 U	80 U
Высота	D	520	520	520	520	590
Ширина	E	750	980	1200	1200	1320
Macca	kg	15	20	24	24	34

FCXI	20P	30P	40P	50P	80P
A	453	453	453	453	558
В	562	793	1013	1013	1147
С	216	216	216	216	216
B C D E F	440	671	891	891	1102
E	41	41	41	41	41
F	101	101	101	101	107
G	74	74	74	74	68
Н	260	260	260	260	273
L	144	144	144	144	253
M	49	49	49	49	32
N	522	753	973	973	1122
Macca (Kg)	13	18	22	22	33

Aermed

participate in the EUROVENT program: FC / 2 / H, FC / 4 / H the products are present on the site www.eurovent-certification.com

Особенности

- 16 типоразмеров и 5 модификаций
- Вертикальной и горизонтальной установки:

FCX Р: установка на стене или потолке помещения

FCX PPC: (FCX 22, 24, 32, 34, 42, 44, 50, 54, 62, 64, 82, 84) установка на стене или потолке помещения без корпуса, с фильтром Plasmacluster. Совместима с системой управления VMF, а также может управляться с помощью панели управления РХАЕ.

FCX PE: модель для установки на стене или потолке помещения без корпуса, с теплообменником непосредственного охлаждения.

FCX PO: модель с 6-и скоростным мотором увеличенной мощности (3 из которых могут быть выбраны), для установки на стене или потолке помеще-

Вентиляторные доводчики канального типа

asmacluster

ния без корпуса (FCX 22, 32, 42, 50, 62, 64, 82, 84). Вертикальной установки:

FCX PV: модель для настенной установки, без корпуса. Модификации с трехрядным теплообменником

- (FCX 17, 22, 32, 42, 50, 62, 82, 102). Модификации с четырёхрядным теплообменни-
- ком (FCX 24, 34, 44, 54, 64 и 84). Сертификат EUROVENT.
- Tnëxскоростной вентиляторный агрегат.
- Полное соответствие правилам техники безопасности.
- Совместим с системой управления VMF.
- Широки выбор панелей управления и дополнительного оборудования.
- Низкий уровень шума.
- Низкая потеря давления в теплообменниках.

• Электромоторы с постоянно подключенными конденсаторами.

Variable Multi Flow®

VMF

- Простота установки и обслуживания.
- Легкосъёмный моющийся воздушный фильтр.
- Возможность выбора различных значений статического давления, соответствующего характеристике воздуховода.
- Огнестойкие материалы внутреннего теплоизоляционного покрытия и воздушного фильтра (класс 1).
- Съёмные лопасти вентилятора удобны для эффективной очистки.
- Возможность изменения стороны подключения трубопроводов контура циркуляции воды в процессе монтажных работ

Дополнительное оборудование

- АМР: Комплект оборудования для установки доводчиков на стене или потолке помещения.
- ВС: Вспомогательный поддон для сбора конденсата. **BV:** Однорядный нагревательный теплообменник. Оборудование этого типа не используется в вентиляторных доводчиках, комплектуемых фильтром
- PLASMACLUSTER и четырехрядным теплообменником. CHF: VentilCassaforma - трафарет из оцинкованного металла, используемый при скрытной установке вентиляторного доводчика в стене помещения. Трафарет значительно облегчает оборудование стенной ниши, скрывающей доводчик. Применяется только в сочетании с моделью FCX-P или FCX-PV.
- **DSC4:** Дренажная система, применяемая в тех случаях, когда естественный отток конденсата невозможен.
- **GA:** Жалюзи воздухозаборника с фиксированным положением створок.
- GAF: Жалюзи воздухозаборника с фиксированным положением створок и с фильтром.
- **GM:** Жалюзи воздухозаборника с регулируемым положением створок.
- **МА:** Лицевая панель корпуса типа A (использовать дополнительный поддон BC4 для FCX AS)
- MU: Лицевая панель корпуса типа U (использовать дополнительный поддон ВС5-6 в случае горизонгальной установки, или ВС4, в случае вертикальной).
- РСЯ: Кожух из оцинкованного металла, закрывающий разъемы для подключения сигнальных кабелей и нагревательного элемента.
- РА: Воздухозаборная камера из оцинкованной листовой стали, оборудованная соединительным элементом для подключения к воздуховоду круглого сечения.
- РА-F: Воздухозаборная камера, позволяющая осу ществлять всасывание и выброс воздуха с одной стороны. Такая камера особенно удобна в тех случаях, когда вентиляторный доводчик устанавливается вне помещения, в которое подается кондици-

онированный воздух, что обеспечивает снижение шума до минимального уровня и облегчает операции по техническому обслуживанию.

- РМ: Воздуховыводящая камера из оцинкованной стали с внешней теплоизоляцией с пластиковым соединительным элементом для подключения к воздуховоду круглого сечения.
- **RD:** Соединительный элемент для подключения воздуховыводящей системы к прямолинейному ΒΟ3ΔΥΧΟΒΟΔΥ.
- RDA: Соединительный элемент для подключения воздухозаборной системы к прямолинейному воздуховоду.
- RP: Соединительный элемент для подключения воздуховыводящей системы к воздуховоду под углом 90°
- **RPA:** Соединительный элемент для подключения воздухозаборной системы к воздуховоду под углом 90°.
- **RX:** Армированный резисторный нагревательный элемент с защитным термостатом, применяемый в сочетании с вентиляторными доводчиками, оборудованными системой управления нагревателями. Оборудование этого типа не используется в вентиляторных доводчиках, комплектуемых фильтром PLASMACLUSTER и четырехрядным теплообменником.
- SE: Жалюзи для подачи свежего воздуха в помещение с регулируемыми вручную створками.
- SIT3-5: Интерфейсные карты термостата. Они позволяют объединить в единую сеть группу фанкойлов (до 10 штук) под управлением единой панели управления (селектора или термостата).
 - SIT3: управляет переключением 3 скоростей вентилятора и должна быть установлена на каждый из фанкойлов, входящих в группу. Получает команды от селектора или от интерфейсной карты SIT5.
 - SIT5: управляет переключением 3 скоростей вентилятора, а также одним или двумя клапанами (в 4х-трубной системе), посылая команды термостата всей группе фанкойлов.
- SW: Датчик температуры воды, который позволяет авто-

- матическое переключение сезонных режимов работы. **SWA:** SWA внешний датчик температуры (с проводом длиной 6 м). Датчик регистрирует температуру окружающего воздуха при подключении его к разъему (А) панели управления FMT20AW; при этом датчик температуры воздуха, встроенный в панель управления, автоматически отключается. Если же датчик подключен к разъему (W) панели управления FMT20AW, то он служит для измерения температуры воды в контуре циркуляции. К панели FMT20AW могут быть одно-
- VCF: Комплект оборудования, включающий 3х-ходовой клапана с теплоизоляцией и медные присоединительные трубки с гайками (также с изоляцией). Для 3х- и 4х-рядных теплообменников, а также для 1о- рядных теплообменников (BV). Имеются модификации с питанием 230В или 24В, 50Гц.

временно подключены два датчика SWA

- VCFD: Комплект оборудования, включающий 2х-ходовой клапана с теплоизоляцией и медные присоединительные трубки с гайками (также с изоляцией). Для 3х- и 4х-рядных теплообменников, а также для 1о-рядных теплообменников (BV). Имеются модификации с питанием 230В или 24В, 50Гц.
- VCF X4: Комплект оборудования, разработанный для доводчиков с единственным теплообменником, установленным в 4х-трубную систему с полностью раздельными контурами охлаждения и нагрева. Комплект состоит из двух 3х-ходовых клапанов, имеющих 4 присоединительных отверстия, с электроприводами и присоединительных медных трубок. Весь комплект имеет теплоизоляцию. Комплект VCF1X4L поставляется для левой стороны подключения фанкойла, комплект VCF1X4R - для правой.
- Электропитание 230В, 50 Γ ц. Панели управления $^{(1)}$ и система VMF $^{(2)}$: Характеристики приведены в соответствующих разделах каталога.

								FCX (Ранкойл									
Дополнительно	е оборудование	17	22	24	32	34	36	42	44	50	54	56	62	64	82	84	102	Versions
FMT10 ⁽¹⁾ ● FMT:	20AW ⁽¹⁾																	P-PE-PO-PV
KTLP ⁽¹⁾		~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	P-PE-PO-PV
PX ⁽¹⁾ ● PX2 ⁽¹⁾ ● P	X2C6(1)*****		~		~			~		~			~	~			~	P-PE-PO-PV
PXAE(1)			~	~	~			~		~	~	~	~	~		~	~	P-PE-PO-PV-PPC
PXAR ⁽¹⁾			~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	P-PE-PO-PV
TF1 ⁽¹⁾								~		~			~					P-PE-PO-PV
TPF ⁽¹⁾		~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	P-PE-PO-PV
WMT05 ⁽¹⁾ • WMT	06 ⁽¹⁾ • WMT10 ⁽¹⁾	~	~	~	~	~	~	~	~	~	~	~	~		~	~	~	P-PE-PO-PV
VMF-E4 ⁽²⁾ ● VMI VMF-E0 ⁽²⁾ ● VMI			~	~	~	~	~	~	~	~	~	~	~	~	~	~		P-PE-PO-PV
AMP*	r-cı ···																	P-PE-PO-PPC
AMP20		~																P-PE-PO-PPC
	4*****																	FCX P-PV + MA
	5	~	~	~	~	~	~	~	~	~	~	~						FCX P + MU
BC	6												~	~	~	~	~	FCX P + MU
	8		~	~	~			~		~								P-PE-PO-PPC
	9												~	~	~	~	~	P-PE-PO-PPC
	117																	P-PE-PV
	122	,	~															P-PE-PO-PV
BV **	132				~		~											P-PE-PO-PV
	142							~		~								P-PE-PO-PV
	162																	P_PF_PO_P\/

	оборудование	17	22	24	32	34	36	+CX Φ 42	анкойл 44	50	54	56	62	64	82	84	102	Модификация
	17 22	V		,														P-PV P-PV
HF	32		~	~	~	~	~											P-PV
	42							~	'	~	~	~						P-PV
SC4*	62			_		_							<i>V</i>	~	<u> </u>	~		P-PV P-PE-PO-PV-PPC
304	17	~																P-PE-PV-PPC
	22		'	~														P-PE-PO-PV-PPC
A	32 42							~			_							P-PE-PO-PV-PPC P-PE-PO-PV-PPC
	62												~	~	~	~	V	P-PE-PO-PV-PPC
	17																	P-PE-PV-PPC
AF	22 32			~	~	~	~											P-PE-PO-PV-PPC P-PE-PO-PV-PPC
	42							~	~	~	~	~						P-PE-PO-PV-PPC
	62													<u> </u>				P-PE-PO-PV-PPC
	17 22			~														P-PE-PV-PPC P-PE-PO-PV-PPC
М	32			-	V	~	V											P-PE-PO-PV-PPC
	42													~		_		P-PE-PO-PV-PPC
	62 17	~																P-PE-PO-PV-PPC P-PE-PV-PPC
	22		~	~														P-PE-PO-PV-PPC
Α	32					~	~											P-PE-PO-PV-PPC P-PE-PO-PV-PPC
	62										~		~	_	~	_		P-PE-PO-PV-PPC
	17	~																P-PE-PV-PPC
U	22 32		'	~		~											-	P-PE-PO-PV-PPC P-PE-PO-PV-PPC
O	42										~							P-PE-PO-PV-PPC
	62												'	~	'	~	~	P-PE-PO-PV-PPC
	<u>17</u> 22																	P-PE-PV-PPC P-PE-PO-PV-PPC
١	32		<u> </u>		~	~												P-PE-PO-PV-PPC
	42							V	~	~	~	~						P-PE-PO-PV-PPC
	62 17 F													~		~		P-PE-PO-PV-PPC P-PE-PV-PPC
	22 F		~	~														P-PE-PO-PV-PPC
١	32 F				~	V	~											P-PE-PO-PV-PPC
	42 F 62 F								·	·	~						_	P-PE-PO-PV-PPC P-PE-PO-PV-PPC
	1	~	~	~	_	~	~	~	~	~		~						P-PE-PO-PV-PPC
CR	2												~	V	~	V	V	P-PE-PO-PV-PPC
	<u>17</u> 22			_														P-PE-PV-PPC
м	32					_												P-PE-PO-PV-PPC P-PE-PO-PV-PPC
	42							V	~	~	~	~						P-PE-PO-PV-PPC
	62													~		~		P-PE-PO-PV-PPC
	17 22			~														P-PE-PV-PPC P-PE-PO-PV-PPC
D	32				V	~	~											P-PE-PO-PV-PPC
	42									~	'							P-PE-PO-PV-PPC
	62 17													~		~		P-PE-PO-PV-PPC P-PE-PV-PPC
	22		~	V														P-PE-PO-PV-PPC
DA	32										~				-			P-PE-PO-PV-PPC P-PE-PO-PV-PPC
	42 62												~	_	~	_	_	P-PE-PO-PV-PPC
	17	~																P-PE-PV-PPC
	22			~														P-PE-PO-PV-PPC
P	32 42								~	~	_							P-PE-PO-PV-PPC P-PE-PO-PV-PPC
	62												~	V	V	V	~	P-PE-PO-PV-PPC
	17 22	~						-										P-PE-PV-PPC
	32		~	~	~	~												P-PE-PO-PV-PPC P-PE-PO-PV-PPC
PA	42							·	~	~	~	·						P-PE-PO-PV-PPC
PA														~				P-PE-PO-PPC P-PE-PV
PA	62	.,																P-PE-PV P-PE-PO-PV
PA	62 17	~	~															
PA X**	62 17 22 32	V	V		~		~											P-PE-PO-PV
PA X**	17 22 32 42	V	V		V		~	~										P-PE-PO-PV P-PE-PO-PV
	62 17 22 32 42 52	V	V		~		V	~		<i>V</i>		V						P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV
	17 22 32 42	<i>V</i>	V		V		<i>V</i>	V		V		V	<i>V</i>		V		V	P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PV
X **	62 17 22 32 42 52 62 15X 20X		<i>V</i>	<i>v</i>				V		V		V	V		V		<i>V</i>	P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PV P-PE-PO-PV-PPC
X**	62 17 22 32 42 52 62 15X 20X 30X			<i>v</i>	<i>V</i>	·	<i>V</i>						<i>v</i>		V		<i>V</i>	P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV-PPC P-PE-PO-PV-PPC
X **	62 17 22 32 42 52 62 15X 20X 30X 40X 80X	V	<i>'</i>		V		<i>V</i>	V	<i>'</i>	V	<i>v</i>		<i>V</i>	<i>V</i>	V	<i>v</i>	<i>V</i>	P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC
(** : :*****	62 17 22 32 42 52 62 15X 20X 30X 40X 80X 3	<i>V</i>	<i>V</i>	V	v	~	<i>V</i>	V	V	<i>V</i>	~	v	<i>V</i>	~	<i>V</i>	V	<i>V</i>	P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV
(** : : :****	62 17 22 32 42 52 62 15X 20X 30X 40X 80X	<i>V</i>	<i>V</i>	<i>V</i>	<i>V</i>	<i>V</i>	<i>V</i>	<i>V V</i>	<i>V</i>	<i>V V</i>	V V	<i>V V</i>	<i>V V V</i>	V	<i>V V</i>	V	<i>V V V</i>	P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC
*** : :***** T N3	62 17 22 32 42 52 62 15X 20X 30X 40X 80X 3	<i>V</i>	<i>V</i>	V	v	~	<i>V</i>	V	V	<i>V</i>	~	v	<i>V</i>	~	<i>V</i>	V	<i>V</i>	P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV
Υ** : : ***** Τ N3	62 17 22 32 42 52 62 15X 20X 30X 40X 80X 3 5	V V V V V	<i>V V V V</i>	<i>V V V</i>	<i>V V V V</i>	<i>V V V</i>	V V V	<i>V V V V</i>	<i>V V V</i>	<i>V V V V</i>	У У У	<i>V V V V</i>	<i>V V V</i>	V V	<i>V V V</i>	V V	V V V	P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV P-PO-PV P-PO-PV-PPC
X** E ****** T W3	62 17 22 32 42 52 62 15X 20X 30X 40X 80X 3 5	V V V V	V V V V	<i>V V</i>	<i>V V V V V</i>	<i>V V</i>	<i>V V V V</i>	<i>V V V</i>	<i>V V</i>	<i>V V V</i>	V V	<i>V V V</i>	<i>V V V</i>	V V V	<i>V V V V</i>	V V V	<i>V V V</i>	P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PO-PV P-PO-PV P-PO-PV-PPC P-PO-PV-PPC P-PO-PV-PPC P-PO-PV-PPC
	62 17 22 32 42 52 62 15X 20X 30X 40X 80X 3 5	V V V V	V V V V	<i>V V V</i>	<i>V V V V V</i>	<i>V V V</i>	V V V	<i>V V V V</i>	<i>V V V</i>	<i>V V V V</i>	У У У	<i>V V V V</i>	<i>V V V</i>	V V	<i>V V V</i>	V V	V V V	P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV P-PO-PV P-PO-PV-PPC
X** E ******* IT W3 WA CF	62 17 22 32 42 52 62 15X 20X 30X 40X 80X 3 5 1x4L - 1x4R 2x4L - 2x4R 3x4L - 3x4R 41 - 4124*** 42 - 4224***	V V V V	V V V V	<i>V V V</i>	V V V V	<i>V V V</i>	V V V	<i>V V V V</i>	<i>V V V</i>	<i>V V V V</i>	У У У	<i>V V V V</i>	V V V	<i>V V V</i>	V V V	<i>V V V</i>	V V V V	P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PC-PO-PV P-PO-PV P-PO-PV P-PO-PV-PPC
X** E ****** T W3 WA	62 17 22 32 42 52 62 15X 20X 30X 40X 80X 3 5 1x4L - 1x4R 2x4L - 2x4R 3x4L - 3x4R 41 - 4124*** 42 - 4224*** 43 - 4324***	V V V V V V V V V V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V	<i>V V V</i>	V V V V V V	<i>V V V</i>	V V V V V V V V V V V V V V V V V V V	\(\times \)	V V V	V V V V V V	<i>V V V</i>	\(\times \)	<i>V V V</i>	V V V	<i>V V V V</i>	V V V	<i>V V V</i>	P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PO-PV-PPC
X** E ****** T W3 WA	62 17 22 32 42 52 62 15X 20X 30X 40X 80X 3 5 1x4L - 1x4R 2x4L - 2x4R 3x4L - 3x4R 41 - 4124*** 42 - 4224*** 43 - 4324*** 44 - 4424***	V V V V	V V V V V V V V V V V V V V V V V V V	<i>V V V</i>	V V V V	<i>V V V</i>	V V V V V	\(\times \)	V V V	V V V	<i>V V V</i>	V V V V	V V V V V	<i>V V V</i>	V V V V V	<i>V V V</i>	V V V	P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PO-PV-PPC
X** E ****** T W3 WA	62 17 22 32 42 52 62 15X 20X 30X 40X 80X 3 5 1x4L - 1x4R 2x4L - 2x4R 3x4L - 3x4R 41 - 4124*** 42 - 4224*** 43 - 4324***	V V V V V V V V V V V V V V V V V V V	V V V V V V V V V V V V V V V V V V V	<i>V V V</i>	V V V V V V	<i>V V V</i>	V V V V V V V V V V V V V V V V V V V	\(\times \)	V V V	V V V V V V	<i>V V V</i>	V V V V	V V V	<i>V V V</i>	V V V	<i>V V V</i>	V V V	P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PO-PV-PPC
X** E ****** IT W3 WA CF *****	62 17 22 32 42 52 62 15X 20X 30X 40X 80X 3 5 1x4L - 1x4R 2x4L - 2x4R 3x4L - 3x4R 41 - 4124*** 42 - 4224*** 43 - 4324*** 44 - 4424*** 45 - 4524*** 1 - 124*** 2 - 222****	V V V V****	V V V V****	\(\times \)	V V V V V V V V V V V V V V V V V V V	<i>V V V</i>	V V V V V V V V V V V V V V V V V V V	\(\times \)	V V V	V V V V V V	<i>V V V</i>	V V V V	V V V	\(\frac{\psi}{\psi} \)	V V V V	\(\frac{\psi}{\psi} \)	V V V V	P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PO-PV-PPC
X** E ****** T W3 WA	62 17 22 32 42 52 62 15X 20X 30X 40X 80X 3 5 1x4L - 1x4R 2x4L - 2x4R 3x4L - 2x4R 3x4L - 2x4R 41 - 4124*** 42 - 4224*** 43 - 4324*** 45 - 4524*** 1 - 124*** 2 - 2224*** 3 - 3224***	V V V V****	V V V V	\(\times \)	V V V V V V V V V V V V V V V V V V V	\(\times \)	V V V V V V V V V V V V V V V V V V V	V V V V	V V V V V V V V V V V V V V V V V V V	V V V	\(\frac{\sqrt{\sq}}}}}}}\sqrt{\sq}}}}}}}}\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	V V V V	V V V V	<i>V V V</i>	V V V V V	<i>V V V</i>	V V V V	P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PE-PO-PV-PPC P-PO-PV-PPC

^{* =} опция DSC4 не совместима с установочным комплектом AMP. DSC4 совместима с установочным комплектом AMP20.

** = опция не доступна для моделей, снабжённых фильтром Plasmacluster

*** = 24B

^{**** =} опция только для однорядного теплообменника BV
***** = РХ2С6, РХ2 в комплекте из 6 установок
****** = клапан VCF и дополнительный поддон BC4 не могут быть установлены совместно на один фанкойл.

							NEW					NEW					
Модель	FCX	17	22	24	32	34	36	42	44	50	54	56	62	64	82	84	102
	W (max)	2490	3400	3950	4975	5850	6150	7400	8600	8620	10100	9650	12920	14300	15140	17100	17020
Теплопроизводительность	W (med)	2070	2700	3200	4085	4850	5050	6415	6930	7530	8760	8430	10940	11500	13350	14420	15240
	W (min)	1610	1915	2200	3380	3850	4180	5115	5200	5420	6240	6060	8330	8500	10770	11200	12560
Теплопроизводительность* (темп. входа воды 50 °С)	W (E)	1360	2100	2320	3160	3550	3800	4240	5250	4900	6100	5380	6460	7810	7990	10400	9670
Теплопроизводительность (электрический нагреватель)	W	700	950	-	1300	-	1300	1650	-	1950	-	1950	2200	-	2200	-	2200
Расход воды	l/h	214	292	340	427	503	529	636	740	741	869	830	1110	1230	1300	1471	1464
Падение давления воды	kPa	2,8	6,3	4	14,2	8	15	14,1	21	14,2	22	40	14,8	22	19,8	30	16,6
Полительной	W (max) (E)	1000	1500	1730	2210	2800	2800	3400	4450	4190	4970	4600	4860	6350	7420	8600	7620
Полная холодопроизводительность	W (med)	890	1330	1500	2055	2450	2600	2800	3780	3640	4770	3990	4660	5520	5500	7600	7140
тельность	W (min)	720	1055	1150	1570	2050	1980	2310	2970	2840	3620	3110	3950	4500	4710	6270	6270
G	W (max) (E)	830	1240	1380	1750	2130	2200	2760	3300	3000	3540	3550	3980	5030	5680	5780	5980
Явная холодопроизводительность	W (med)	710	1055	1140	1540	1789	1930	2115	2722	2750	3101	3250	3510	4195	4250	5016	4984
Тельность	W (min)	540	755	828	1100	1441	1380	1635	2079	2040	2281	2410	2825	3330	3450	4013	4263
Расход воды	l/h	172	258	297	380	482	482	585	765	721	855	791	836	1092	1276	1479	1311
Падение давления воды	kPa (E)	2,6	5,8	3	16,6	9	28	14,3	19,2	19,3	25,9	38	11,6	13	13,5	22	19,2
	m³/h (max)	200	290	290	450	450	450	600	600	720	720	720	920	920	1140	1140	1300
Расход воздуха	m³/h (med)	160	220	220	350	350	350	460	460	600	600	600	720	720	930	930	1120
	m³/h (min)	110	140	140	260	260	260	330	330	400	400	400	520	520	700	700	900
Кол-во вентиляторов	n.	1	1	1	2	2	2	2	2	2	2	2	3	3	3	3	3
	dB (A) (max)	36,5	41,5	42,5	39,5	39,5	39,5	42,5	46,5	47,5	47,5	47,5	48,5	48,5	53,5	52,5	57,5
Звуковое давление	dB (A) (med)	29,5	34,5	37,5	32,5	32,5	32,5	35,5	41,5	42,5	44,5	42,5	42,5	42,5	48,5	48,5	52,5
	dB (A) (min)	22,5	22,5	26,5	25,5	27,5	25,5	28,5	32,5	33,5	35,5	33,5	33,5	35,5	41,5	42,5	47,5
Звуковое давление FCX PO	dB (A) (max)	-	49,5	49,5	44	44	44	50	50	50,5	50,5	50,5	53,5	53,5	55,5	55,5	-
Звуковая мощность FCX PO	dB (A) (max)	-	58	58	52,5	52,5	52,5	58,5	58,5	59	59	59	62	62	64	64	-
	dB (A) (max) (E)	45	50	51	48	48	48	51	55	56	56	56	57	57	62	61	66
Звуковая мощность	dB (A) (med) (E)	38	43	46	41	41	41	44	50	51	53	51	51	51	57	57	61
	dB (A) (min) (E)	31	31	35	34	36	34	37	41	42	44	42	42	44	50	51	56
Ёмкость (вода)	I	0,58	0,79	1	1,11	1,5	1,11	1,48	1,9	1,48	1,9	1,48	2,52	3,4	2,52	3,4	2,52
A4000	FCX P (E)	35	25	33	44	44	44	57	57	67	67	67	82	91	106	106	131
Макс. мощность мотора (W)	FCX PO	-	54	54	97	97	97	111	111	82	82	82	97	97	135	135	-
A4 (A)	FCX P	0,16	0,12	0,25	0,21	0,45	0,21	0,28	0,51	0,35	0,36	0,35	0,4	0,48	0,49	0,62	0,58
Макс. входной ток (А)	FCX PO	-	0,25	0,25	0,45	0,45	0,45	0,51	0,51	0,36	0,36	0,36	0,48	0,48	0,62	0,62	-
Макс. мощность мотора с	FCX P	735	975	-	1344	-	1344	1707	-	2017	-	2017	2282	-	2306	-	2331
электрическим нагревом (W)	FCX PO	-	1004	-	1397	-	1397	1761	-	2032	-	2032	2297	-	2335	-	-
Макс. входной ток с элек-	FCX P	3,2	4,25	-	5,86	-	5,86	7,45	-	8,83	-	8,83	9,97	-	10,06	-	10,15
трическим нагревателем (А)	FCX PO	-	4,38	-	6	-	6	7,68	-	8,84	-	8,84	10,05	-	10,19	-	-
T. 6	Ø (4R)	-	-	3/4"	-	3/4"	-	-	3/4"	-	3/4"	-	-	3/4"	-	3/4"	-
Трубопроводные соеди-	Ø (3R)	1/2"	1/2"	-	1/2"	-	3/4"	3/4"	-	3/4"	-	3/4"	3/4"	-	3/4"	-	3/4"
нения	Ø (1R)	1/2"	1/2"	-	1/2"	-	1/2"	1/2"	-	1/2"	-	1/2"	1/2"	-	1/2"	-	1/2"

Электропитание – 230 В (однофазное), 50 Гц

(E) – указанные характеристики сертифицированы EUROVENT

Звуковое давление измерено в полуреверберационной испытательной камере объемом 85 м³ с временем реверберации Tr = 0,5 с., с фактором направленности Q = 2, на дистанции r = 2,5 м.

Охлаждение:

Температура воздуха в помещении 27°C (по сухому термометру), 19°С (по мокрому термометру);

- максимальная скорость:
 темп. воды на входе 7°С, перепад температуры воды 5°С;
 средняя и минимальная скорости:
 температура воды на входе 7°С, расход воды как при
 - максимальной скорости.

Нагрев 70 °C:

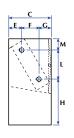
Температура воздуха в помещении 20°C по сухому термометру;

- максимальная скорость:

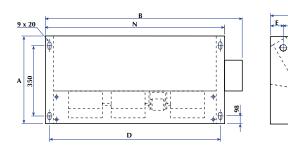
EUROVENT

максимальная скорость:
 температура воды на входе 70°С, перепад температуры воды 10°С;
 при средней и низкой скоростях:
 температура воды на входе 70°С, расход воды – тот же, что и при максимальной скорости.

■ Нагрев 50°C:

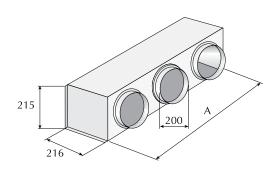

тапрет зо с.
 температура воздуха в помещении 20°С по сухому термометру;
 максимальная скорость:

- - температура воды на входе 50°C; расход воды тот же, что при режиме работы на охлаждение.

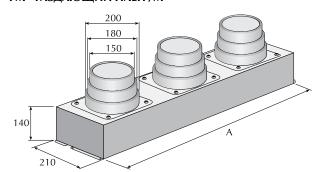

МОДИФИКАЦИЯ		ДОСТУПНЫЕ ТИПОРАЗМЕРЫ														
FCX P	1 <i>7</i>	22	24	32	34	36	42	44	50	54	56	62	64	82	84	102
FCX PV	17	22	24	32	34	36	42	44	50	54	56	62	64	82	84	102
FCX PO	-	22	24	32	34	36	42	44	50	54	56	62	64	82	84	-
FCX PE	-	22	-	32	-	-	42	-	50	-	-	62	-	82	-	102
FCX PPC	-	22	24	32	34	36	42	44	50	54	56	62	64	82	84	-

FCX 17 - 22 / 24 - 32 / 34 / 36 - 42 / 44 - 50 / 54 / 56

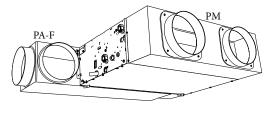
B N N 388 b

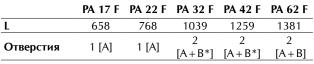


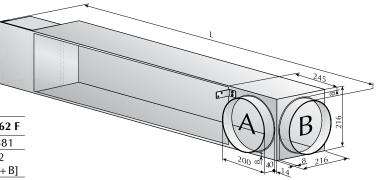
FCX 62 / 64 - 82 / 84 - 102


FCX	17	22 / 24	32 / 34	42 / 44	50 / 54	62 / 64	82 / 84	102
A	453	453	453	453	453	558	558	558
В	452	562	793	1013	1013	1147	1147	1147
С	216	216	216	216	216	216	216	216
D	330	440	671	891	891	1102	1102	1102
E	41	41	41	41	41	41	41	41
F	101	101	101	101	101	107	107	107
G	74	74	74	74	74	68	68	68
Н	260	260	260	260	260	273	273	273
L	144	144	144	144	144	253	253	253
M	49	49	49	49	49	32	32	32
N	412	522	753	973	973	1122	1122	1122
Вес (кг)	11	13	18	22	22	33	33	33

РА - ВСАСЫВАЮЩИЙ ПЛЕНУМ


PA	17	22	32	42	62
Α	390	500	731	951	1072
Отверстия	1	2	2	3	4


РМ - РАЗДАЮЩИЙ ПЛЕНУМ


PM	17	22	32	42	62
A	412	522	753	973	1094
Отверстия	1	2	2	3	4

РА-F - ВСАСЫВАЮЩИЙ ПЛЕНУМ С ЗАБОРОМ СПЕРЕДИ

 $B^* = 3$ акрытое входное отверстие, для использования удалите заглушку с перфорацией

VEC

Вентиляторные доводчики кассетного типа, с эффектом Коанда (эффект «прилипшей» к потолку струи воздуха) для установки на подвесном потолке.

Aermec participates in the EUROVENT certification programme.

The products concerned appear in the EUROVENT Certified Products Guide.

Особенности

VEC: Вентиляторные доводчики для обработки воздуха в летний период. Воздух подаётся через специальные отверстия и, благодаря эффекту «прилипшей» к потолку струи, равномерно распределяется в помещении.

- 4 типоразмера.
- Установка в подвесном потолке.
- Совместимы с системой управления VMF
- Решетка со всасывающей секцией и регулируемыми отверстиями, с эффектом Коанда (обязательное оборудование).
- 3-х. рядный теплообменник.
- Сниженные потери давления через

теплообменник.

- Для систем с постоянным или переменным расходом.
- Сертифицировано EUROVENT.
- 3-х. скоростной вентилятор.
- Бесшумная работа.
- Моторы с постоянно подключенными конденсаторами.
- Легко съёмный и легко очищаемый воздушный фильтр.
- Внутренняя изоляция и воздушный фильтр относятся к первому классу огнестойкости.
- Съёмные стенки корпуса для простой и **удобной чистки.**

VMF

- Возможность изменения направления подключения воды во время установки.
- Широкий спектр контроллеров и дополнительного оборудования.
- Легкая установка и обслуживание.
- Полное соответствие требованиям безопасности.
- Для получения информации о функционировании доводчика в режиме нагрева, пожалуйста, обращайтесь к полной технической инструкции.

Дополнительное оборудование

Необходимое оборудование:

Следующее оборудование обязательно необходимо для правильной работы фан-

- VEC GL: Решетка со всасывающей секцией и регулируемыми отверстиями, с эффектом Коанда. Белого цвета по RAL 9010.
- Панель управления: характеристики различных панелей управления описаны в соответствующих инструкциях.

Необязательное дополнительное оборудование: • АМР: Комплект для установки оборудо-

- вания на стене
- ВС5: Вспомогательный поддон для сбора кондесата
- BV: Однорядный водяной теплообменник
- DSC4: Дренажная насос, применяемый в том случае, когда естественный отток конденсата невозможен.
- PCR1: Защита из стального гальванизированного листа для блока управления и электрического резистора.
- SIT3-5: интерфейсные карты термостата.

Данные карты позволяют создать сеть фанкойлов (до 10 шт.), управляемую с одного термостата или переключателя.

- SIT3: интерфейсная карта, управляющая 3 скоростями вращения вентилятора, должна быть установлена на каждый доводчик сети; получает команды от переключателя или от интерфейсной карты SIT5.
- SIT5: интерфейсная карта, управляющая 3 скоростями вращения вентилятора и двумя клапанами (в 4-х. трубных системах); передаёт команды термостата к сети фанкойлов.
- SW3: датчик температуры воды, позволяет выполнять автоматическое сезонное переключение режима работы для электронных термостатов, оборудованных системой переключения сезона работы на основании показаний датчика температуры воды.
- SWA: Выносной датчик температуры воздуха (длиной L= 6м.). Измеряет темпера-

туру окружающего воздуха, если подключен к разъёму (А) панели FMT20AW; в этом случае встроенный в панель датчик температуры будет автоматически отключен.

- Определение температуры воды в системе для обеспечения согласования работы, если датчик подключен к разъёму (W) панели FMT20AW. Два датчика SWA могут быть одновременно подключены к панели FMT20AW.
- VCF: комплект оборудования, включающий трехходовой вентиль, медные соединительные элементы и трубки. Для трёхрядных и однорядных теплообменников (BV). Имеются модификации с электропитанием 230В и 24В ~ 50Гц.
- VCFD: комплект оборудования, включающий двухходовой вентиль, медные соединительные элементы и трубки. Для трёхрядных и однорядных теплообменников (BV). Имеются модификации с электропитанием 230В и 24В ~ 50Гц.

		Типора	змер		
Обор.		VEC20	VEC30	VEC40	VEC50
SW	3	/	/	/	/
SWA		/	/	/	/
	41	V	V		
	42			V	V
	44*	V	V	V	V
VCF	4124	V	V		
	4224			V	V
	4424*	V	V	V	V
	1	V	/		
	2 4*			/	/
	4*	V	/	/	/
VCFD	124	V	V		
	224			V	V
	424*	V	<u> </u>	<u> </u>	V

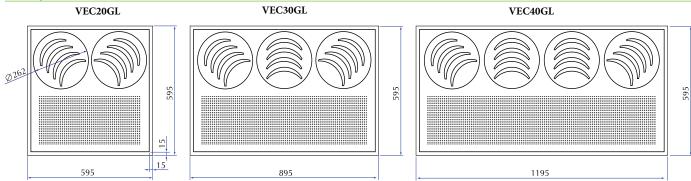
			Типора	змер					Типора	змер	
0	Обор.		VEC20	VEC30	VEC40	VEC50	Обор.	VEC20	VEC30	VEC40	VEC50
	AMP		V	<u> </u>	V	V	VEC20GL	V			
	AMP	20	V	<u> </u>	V	V	VEC30GL		V		
	BC	5	<u> </u>	<u> </u>	V	<u> </u>	VEC40GL			<u> </u>	~
		122	<u> </u>								
	BV	132		<u> </u>			FMT10	V	V	V	~
		142			<u> </u>	<u> </u>	FMT20AW	V	V	V	~
	DSC	4	V	V	~	V	KTLP	V	V	V	V
	SIT	3	V	V	V	~	PX2	V	V	V	V
	SIT	5	V	<u> </u>	~	~	PXAE	V	V	/	~
	PCR1		V	<u> </u>	~	~	PXAR	V	/	V	~
							WMT05	V	/	V	~
							WMT10	V	V	V	V

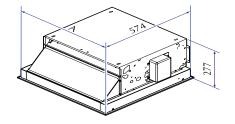
^{* =} только для однорядного теплообменника BV

Технические характеристики

Модель VEC		20	30	40	50
	W (max)	1320	1950	2985	3610
Полная холодопроизводительность	W (med)	1085	1645	2470	3170
	W (min)	805	1370	1985	2350
	W (max)	1085	1535	2410	2595
Явная холодопроизводительность	W (med)	885	1285	1980	2275
	W (min)	640	1055	1580	1680
Расход воды	l/h	227	335	514	621
Перепад давления воды	kPa	4,6	13,3	11,3	14,8
	m ³ /h (max)	247	383	511	613
Расход воздуха	m³/h (med)	194	309	406	529
	m³/h (min)	130	241	306	371
Количество вентиляторов	n.	1	2	2	2
	dB (A) (max)	39,5	36,5	40,0	44,5
Звуковое давление	dB (A) (med)	33,5	31,5	34,5	41,5
	dB (A) (min)	26,5	26,5	29,5	34,5
	dB (A) (max)	48,0	45,0	48,5	53,0
Звуковая мощность	dB (A) (med)	42,0	40,0	43,0	50,0
	dB (A) (min)	35,0	35,0	38,0	43,0
Ёмкость (вода)	I	0,79	1,11	1,48	1,48
Макс. мощность мотора	W	25	44	57	67
Макс. входной ток	A	0,12	0,21	0,28	0,35
Макс. мощность с эл. воздухонагр. (RX)	W	975	1344	1707	2017
Макс. входной ток с эл. воздухонагр. (RX)	A	4,25	5,86	7,45	8,83
Присоед, диаметр 3-хядного теплообменника	Ø	1/2"G	1/2"G	3/4"G	3/4"G
Присоед, диаметр одноядного теплообменника	Ø	1/2"G	1/2"G	1/2"G	1/2"G

Режим нагрева: см. полную техническую инструкцию


Электропитание = 230В ~ 50Гц


(E) = сертифицировано EUROVENT

Звуковое давление измерено в полуреверберационной камере объёмом 85м^3 с временем реверберации Tr = 0.5 c.

- Охлаждение:
- Оллаждение: температура воздуха в помещении 27 °C (по сухому термометру), 19 °C (по мокрому термометру) температура воды на входе 7 °C Δt воды 5 °C

Размеры (мм)

Модель	VEC	020	030	040	050
	VEC	20GL	30GL	40GL	40GL
A	mm	574	874	1174	1174
Macca (VEC)	kg	15,5	20,6	24,7	24,7
Macca (VEC GL)	kg	3,7	5,7	7	7

Omnia HL

CERTIFIED **PERFORMANCE** ww.eurovent-certification.com

Aermec adheres to the EUROVENT Certification

The products concerned appear in the EUROVENT Certified Products Guide

помещениях

VMF

Variable Multi Flow®

Вентиляторные доводчики Omnia HL для универсальной установки в жилых

GIUGIARO

Белый цвет:

Боковые панели: RAL 9002 Верх и опоры: RAL 7044

Серый цвет:

Боковые панели: FIAT 656 Верх и опоры: RAL 7031

Особенности

- Вентиляторные доводчики серии HL (High Line) для установки как в горизонтальном, так в вертикальном положении.
- Четыре типоразмера и две модификации: HL - с корпусом белого цвета и переключателем:
- **HL M** с металлизированным корпусом серого цвета и переключателем;
- HL C с корпусом белого цвета и электронным термостатом: **HL CM** - с металлизированным корпусом
- серого цвета и электронным термостатом; HL L - с корпусом белого цвета, самозакрывающимися жалюзи и электронным термостатом:
- HL LM с корпусом серого цвета, самозакрывающимися жалюзи и электронным термостатом;

- **HL PC** с корпусом белого цвета, электронным термостатом и фильтром Plasmacluster (устанавливается на заводеизготовителе);
- **HL PCM** с металлизированным корпусом серого цвета, электронным термостатом и фильтром Plasmacluster (устанавливается на заводеизготовителе);
- HL S с корпусом белого цвета, без органов управления на корпусе:
- HL SM с металлизированным корпусом серого цвета, без органов управления на корпусе.
- Сертификация по стандарту EUROVENT. Трехскоростной центробежный вентилятор.
- Крайне низкий уровень шума.
- Форма, отвечающая самым высоким эстетическим требованиям, мягкие линии корпуса.
- Регулируемые жалюзи новой конструкции.

- Автоматическое закрытие жалюзи при отключении питания.
- Компактная конструкция.
- Электронная регулировка температуры, автоматическое изменение скорости вращения вентилятора, автоматическое переключение на зимний/летний режим работы, автоматическое включение/ выключение (с помощью термостата).
- Возможность подключения трубопроводов с разных сторон корпуса.
- Низкое падение давления в теплообменнике.
- Электромоторы с постоянно подключенными конденсаторами.
- Простота монтажа и обслуживания.
- Полное соответствие правилам техники безопасности.

Дополнительное оборудование

АМР: Комплект элементов крепления к стене/ потолку помещения, входит в стандартную комплектацию модификаций S и SM.

ВС: Вспомогательный поддон для сбора конденсата.

ВС10 для вертикальной установки.

ВС20 для горизонтальной установки. РСН – РСНМ: Задняя панель корпуса белого (РСН) или серого (РСНМ) цвета.

РХ: Панель управления с переключателем. РХАЕ: Электронный термостат для вентиляторных доводчиков с двухтрубными и четырех трубными системами. Облегченная система управления, включающая два регулятора для контроля температуры и вентиляции (режим работы в трех скоростях с автоматическим или ручным управлением). Возможно регулирование до двух клапанов двухпозиционного типа. Настенной установки.

РХВ: Панель управления с электронным термостатом.

SIT 3-5: Интерфейсные карты термостата. Они используются для объединения нескольких доводчиков (до 10) в единую сеть с централизованным управлением (по командам оператора или термостата).

SIT3: Интерфейсная карта для задания одной из трех скоростей вращения вентилятора. Такой картой оборудуется каждый доводчик, входящий в сеть. Скорость задается переключателем или командой от карты SIT5.

SIT5: Интерфейсная карта, задающая одну из трех скоростей вращения вентилятора и управляющая работой одного или двух (для четырехтрубных систем) вентилей. Карта передает команды термостата в сеть, объединяющую доводчики.

SW: Дачик температуры воды, позволяющий автоматически переключать режимы "охлаждение", "нагрев".

SWA: Внешний датчик (с кабелем 6м). При подключении к клемме А панели FMT20AW используется для контроля температуры воздуха в помещении, при этом встроенный латчик автоматически отключается. При подключении к клемме W используется для контроля температуры воды. Одновременно могут быть подключены два датчика SWA.

VCH: Комплект оборудования, включающий трехпозиционный вентиль с электроприволом. соединительные элементы и медные трубы.

ZH1: Опоры корпуса белого цвета для

Совместимость доп. оборудования Omnia HL 11 16 26 36 Модификации AMP 10 Bce кроме S, SM BC 10 Bce BC 20 Bce DSC5 B<u>ce</u> FMT10 S, SM FMT20AW S, SM Bce S, SM PCH/PCHM PX2 • PX2C6 PXAE S, SM S, SM S, SM SIT 3 SIT 5 S, SM SW3 SWA SM Все кроме L, LM VCH WMT05 S, SM S, SM 1 S, Si Bce ZH1/ZH1B ZH1M/ZH1MB

напольной установки доводчика.

ZH1B: Опоры корпуса белого цвета с «юбкой» для напольной установки доводчика. **ZH1M:** Опоры корпуса серого цвета для напольной установки доводчика.

ZH1MB: Опоры корпуса серого цвета с «юбкой» для напольной установки доводчика.

Особенности

Очистка вентилятора. Конструкция доводчиков серии Omnia обеспечивает легкость очистки лопастей вентилятора: теперь крыльчатка вентилятора просто снимается.

Очистка поддона для сбора конденсата Новая система крепления поддона для сбора конденсата, примененная в доводчиках серии Omnia, облегчает его очистку. Это предотвращает возможность бактериального заражения поддона. образование налета на поверхности поддона в процессе дли тельной эксплуатации доводчика.

Электростатический воздушный фильтр.

Доводчики серии Omnia в стандартной комплек-

тации оборудованы электростатическими фильтрами, несущими электрический зарял. Благоларя специально разработанной конструкции такие фильтры задерживают любые все частички пыли, присутствующие в воздухе, обеспечивая полную частоту воздуха в помещении.

Ионизационный фильтр PLASMACLUSTER. Фильтр такой конструкции снижает концентрацию вред ных примесей в воздухе путем химического разло жения молекул загрязняющих воздух веществ. В процессе работы фильтра происходят электрические разряды, вызывающие разложение молекул воды, присутствующей в воздухе, на

положительно и отрицательно заряженные ионы. Эти ионы нейтрализуют молекулы вредных веществ, превращая их в безвредные примеси, обычно находящиеся в чистом воздухе. В результате в помещение поступает чистый ионизированный воздух, лишен ный посторонних запахов.

Низкий уровень шума. Центробежные вентиляторы специальной конструкции, которыми снабжаются доводчики серии Omnia, обладают предельно низким уровнем шума, что гарантирует акусти ческий комфорт при эксплуатации доводчиков в жилых помещениях.

Mod. Omnia		HL 11	HL 16	HL 26	HL 36
	W (max.)	2010	2910	4620	5940
Теплопроизводительность	W (med.)	1460	2120	3830	4870
·	W (min.)	1060	1540	2890	3530
Теплопроизводительность (50°C)*	W (E)	1150	1700	2750	3540
Расход воды	l/h	173	250	397	511
Падение давления	kPa	1.6	3.7	10.5	7.4
	W (max.) (E)	840	1200	2030	2830
Полная холодопроизводительность	W (med.)	650	950	1780	2310
·	W (min.)	490	690	1420	1730
	W (max.) (E)	700	990	1640	2040
Холодопроизводительность	W (med.)	530	750	1370	1790
	W (min.)	390	520	1050	1280
Расход воды	l/h	144	206	349	487
Тадение давления	kPa (E)	1.9	4.8	11.0	9.5
	m³/h (max.)	180	240	350	460
Расход воздуха	m³/h (med.)	120	160	270	350
	m³/h (min.)	80	110	190	240
Вентиляторы	n.	1	1	2	2
	dB (A) (max.)	37.5	39.5	39.5	39.5
Ввуковое давление	dB (A) (med.)	28.5	34.5	34.5	32.5
•	dB (A) (min.)	22.5	25.5	26.5	25.5
	dB (A) (max.) (E)	46	48	48	48
Ввуковая мощность	dB (A) (med.) (E)	37	43	43	41
·	dB (A) (min.) (E)	31	34	35	34
Емкость	I	0.4	0.5	0.8	1.1
Макс. мощность двигателя	W (E)	18	32	35	42
Макс потр. ток	A	0.09	0.15	0.18	0.22
Трубопр. соединения	Ø	1/2"	1/2"	1/2"	1/2"

Электропитание – 230 В (однофазное), 50 Гц.

(E) = сертифицировано EUROVENT

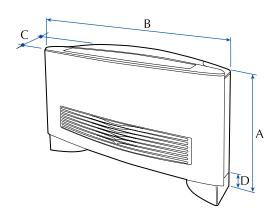
Указанные технические характеристики относятся к следующим условиям:

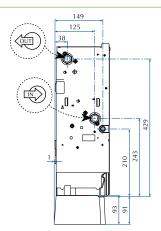
Охлаждение:

- температура воздуха в помещении 27°С по сухому
 термометру, 19 °С по мокрому термометру;
 максимальная скорость:

- температура воды на входе 7°C; разность температур t = 5°C.
 средняя и низкая скорость:
- расход воды такой же, как на высокой скорости.

— Нагрев:


максимальная скорость:


- температура воды на входе 70°C, разность температур 10°C; средняя и низкая скорость:
 - температура воды на входе 70°С, расход воды такой же, как

на высокой скорости.

Нагрев*(E):
максимальная скорость (при температуре воды 50 °C):
температура воды на входе 50 °C, расход воды такой же, как при работе на охлаждение.

Размеры (мм)

Mod Omnia		HL 11	HL 16	HL 26	HL 36
Высота	A	600	605	615	623
Ширина	В	640	750	980	1200
Глубина	С	187	189	191	198
Высота	D	93	93	93	93
Macca	kg	13.6	14.6	17.6	20.6

FCW

Настенные вентиляторные доводчики

Aermec participate in the EUROVENT program: FC / 2 / H the products are present on the site www.eurovent-certification.com

Variable Multi Flow® VMF

- 2V МОДИФИКАЦИЯ СО ВСТРОЕННЫМ ДВУХПОЗИ-ЦИОННЫМ ВЕНТИЛЕМ ПРОВОДНАЯ ПАНЕЛЬ ДИС-ТАНЦИОННОГО УПРАВЛЕНИЯ ИЛИ ПУЛЬТ ДИС-ТАНЦИОННОГО УПРАВЛЕНИЯ
- 3V МОДИФИКАЦИЯ СО ВСТРОЕННЫМ ТРЕХПОЗИ-ЦИОННЫМ ВЕНТИЛЕМ ПРОВОДНАЯ ПАНЕЛЬ ДИС-ТАНЦИОННОГО УПРАВЛЕНИЯ ИЛИ ПУЛЬТ ДИС-ТАНЦИОННОГО УПРАВЛЕНИЯ
- VL МОДИФИКАЦИЯ БЕЗ ВЕНТИЛЯ ПРОВОДНАЯ
 ПАНЕЛЬ ДИСТАНЦИОННОГО УПРАВЛЕНИЯ ИЛИ
 ПУЛЬТ ДИСТАНЦИОННОГО УПРАВЛЕНИЯ
- 2VN МОДИФИКАЦИЯ СО ВСТРОЕННЫМ ДВУХПО-ЗИЦИОННЫМ ВЕНТИЛЕМ СТАНДАРТНАЯ ПАНЕЛЬ УПРАВЛЕНИЯ ИЛИ СИСТЕМА VMF
- 3VN МОДИФИКАЦИЯ СО ВСТРОЕННЫМ ТРЕХПО-ЗИЦИОННЫМ ВЕНТИЛЕМ СТАНДАРТНАЯ ПАНЕЛЬ УПРАВЛЕНИЯ ИЛИ СИСТЕМА VMF
- VLN МОДИФИКАЦИЯ БЕЗ ВЕНТИЛЯ СТАНДАРТНАЯ ПАНЕЛЬ УПРАВЛЕНИЯ ИЛИ СИСТЕМА VMF

Особенности

Комбинируя различные опции, можно подобрать необходимую конфигурацию, которая наиболее полно отвечает требованиям заказчика:

1 2 3 4 5 I TEPMOR TEPMOR 21 2VN (встроен 41

Терморегулирующий вентиль 2VN (встроенный двухпозиционный вентиль) 3VN (встроенный трехпозиционный вентиль) VLN (без вентиля)

67

Микропроцессорная система управления (°) с управлением **N** без управления

8

- Сертификация EUROVENT
- Цвет кремовый
- Дисплей на передней панели
- Трехскоростной вентиляторный агрегат тангенциального типа
- Предельно низкий уровень шума
- Привлекательный дизайн
- Регулируемые в горизонтальной плоскости жалюзи воздухораспределения
- Дефлекторы воздуховыводящей системы с регулировкой положения створок в горизонтальной плоскости. Ручное управление только для устройств без

системой управления регулируются только через проводную панель дистанционного управления PFW2 или пульт дистанционного управления TLW2.

• Программируемый таймер включения/

микропроцессорной системы управле-

ния. Устройства с микропроцессорной

- Программируемый таймер включения, выключения (TLW2 и PFW2).
- Возможность автоматической работы в режимах охлаждения, нагрева, вентиляции и осушки воздуха (TLW2 и PFW2).
- Функция сна только с помощью пульта дистанционного управления TLW2

- Автоматический выбор сезонного режима работы (TLW2 и PFW2).
- Автоматический запуск после внезапного отключения электропитания.
- Простота установки с гидравлическими и дренажными соединениями, настраиваемыми в нескольких направлениях
- Текущее техническое обслуживание ограничивается периодическими очистками воздушного фильтра
- Легкосъемный моющийся фильтр
- Полное соответствие правилам техники безопасности

Дополнительное оборудование

 TLW2 Пульт дистанционного управления (оборудование для модификаций с микропроцессорной системой управления FCW_2V, FCW_3V, FCW_VL):

Пульт необходим для функционирования вентиляторного доводчика и является альтернативой для проводной панели управления PFW2. Применение пульта и панели управления одновременно не допускается. Пульт TLW2 поставляется отдельно от венти-

Пульт TLW2 поставляется отдельно от вентиляторного доводчика. Один пульт может использоваться для управления несколькими доводчиками.

С помощью пульта управления можно задавать все рабочие параметры вентиляторного доводчика, которые индицируются на жидкокристаллическом дисплее, что облегчает процесс управления.

Пульт комплектуется держателем, с помощью которого он может устанавливаться на стене помещения. Причем процесс управле-

ния не требует снятия пульта с держателя. Держатель крепится в легко доступном месте,которое не подвержено воздействию источников тепла,испарений или прямых солнечных лучей, на расстоянии не менее одного метра от телевизионных приемников и иных электронных приборов.

Пульт питается от двухпальчиковых батареек типа R03 (AAA) напряжением 1,5 В и обеспечивает надежный обмен сигналами с доводчиком на расстоянии до 7 м.

 PFW2 проводная панель дистанционного управления (оборудование для модификаций с микропроцессорной системой управления FCW_2V, FCW_3V, FCW_VL):

Панель необходима для функционирования вентиляторного доводчика и является альтернативой для пульта дистанционного управления TLW2.

Применение пульта и панели управления одновременно не допускается.

Панель PFW2 может управлять работой только одного вентиляторного доводчика. Панель устанавливается на стене помещения и соединяется с доводчиком кабелем длиной 4 м.входящим в комплект поставки.

С помощью панели PFW2 можно задавать основные рабочие параметры, которые индицируются на жидкокристаллическом дисплее, что облегчает процесс управления.

• Проводные панели управления и система VMF (оборудование для модификаций без микропроцессорной системы управления FCW 2V, FCW 3V, FCW VL):

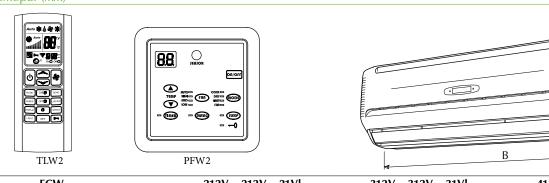
Оборудование необходимое, для функционирования вентиляторного доводчика — это проводная панель управления или система VMF.

Характеристики панелей управления описаны в соответствующем разделе каталога.

Модель	FCW	212V	213V	21VL	312V	313V	31VL	412V	413V	41VL
	W (max.)	2400	2400	2560	3000	3000	3125	4750	4750	5100
Теплопроизводительность (Е)	W (med.)	1800	1800	2180	2600	2600	2690	4310	4310	4675
	W (min.)	1400	1400	1700	1940	1940	2225	3750	3750	3840
	kPa (max.)	21	21	8	26	26	14	28	28	23
Падение давления воды (Е)	kPa (med.)	13	13	6	20	20	10	24	24	19
	kPa (min.)	8	8	4	12	12	7	18	18	14
	W (max.)	1900	1900	2050	2400	2400	2500	3800	3800	4080
Холодопроизводительность (Е)	W (med.)	1450	1450	1740	2080	2080	2150	3450	3450	3740
	W (min.)	1100	1100	1370	1550	1550	1780	3000	3000	3075
	W (max.)	1550	1550	1735	1970	1970	2040	2850	2850	3475
Явная холодопроизводительность (Е)	W (med.)	1200	1200	1475	1680	1680	1825	2500	2500	3115
	W (min.)	920	920	1160	1280	1280	1510	2015	2015	2595
	l/h (max.)	327	327	352	413	413	430	654	654	702
Расход воды	I/h (med.)	249	249	299	358	358	370	593	593	643
	l/h (min.)	189	189	236	267	267	306	516	516	529
	kPa (max.)	23	23	9	29	29	15	32	32	26
Падение давления (Е)	kPa (med.)	14	14	7	22	22	11	27	27	21
	kPa (min.)	9	9	5	13	13	8	21	21	15
	W (max.)	27	27	27	27	27	27	48	48	48
Потребляемая мощность (Е)	W (med.)	24	24	24	23	23	23	41	41	41
	W (min.)	23	23	23	22	22	22	41	41	31
	A (max.)	0,13	0,13	0,13	0,13	0,13	0,13	0,23	0,23	0,23
Потребляемый ток	A (med.)	0,11	0,11	0,11	0,11	0,11	0,11	0,19	0,19	0,19
	A (min.)	0,1	0,1	0,10	0,11	0,11	0,11	0,14	0,14	0,14
	m³/h (max.)	380	380	389	440	440	446	540	540	684
Расход воздуха	m³/h (med.)	330	330	340	390	390	400	470	470	602
	m³/h (min.)	270	270	280	320	320	330	370	370	476
	dB (A) (max.)	44,5	44,5	44,5	44,5	44,5	44,5	45,5	45,5	45,5
Звуковое давление	dB (A) (med.)	39,5	39,5	39,5	39,5	39,5	39,5	40,5	40,5	40,5
,	dB (A) (min.)	34	34	34	34	34	34	35,5	35,5	35,5
	dB (A) (max.)	53	53	53	53	53	53	54	54	54
Звуковая мощность (Е)	dB (A) (med.)	48	48	48	48	48	48	49	49	49
•	dB (A) (min.)	42,5	42,5	42,5	42,5	42,5	42,5	44	44	44
Трубопроводные соединения	Ø	¹ /2" F								

(E) = сертифицировано EUROVENT

3 вуковое давление измерено в полуреверберационной испытательной камере объемом 85 м³; с временем реверберации Tr = 0,5 с; при коэффициенте направленности, равном 2; на расстоянии 2,5 м


Охлаждение:

- Охлаждение:
 Темп. воздуха в помещении 27°C по сухому термометру, 19°C по мокрому термометру;
 Темп. воды на входе 7°C
 Разность температур Δt = 5°C

Нагрев: - Темп. воздуха в помещении $20^{\circ}C$ по сухому термометру; - Темп. воды на входе $50^{\circ}C$ - Разность температур $\Delta t = 5^{\circ}C$ - Расход воды такой же, как и при охлаждении

0000

Размеры (мм)

FCW		212V 212V 21Vl	312V 312V 31Vl	412V 412V 41Vl
Высота	Α	298	305	360
Ширина	В	880	990	1172
Глубина	С	180	180	210
Macca	Кг	9	10	19

FCL

Вентиляторные доводчики кассетного типа для установки на подвесном потолке, с холодопроизводительностью от 1900 до 11000 Вт

Модели: FCL 32, FCL36, FCL42, FCL62 FCL 34, FCL38, FCL44, FCL64 Модели: FCL 82, FCL102, FCL122 FCL 84, FCL104, FCL124

Aermec adheres to the EUROVENT Certification Programme.

The products concerned appear in the EUROVENT Certified Products Guide.

FCLMC Белый

Variable Multi Flew® VMF

Стандартные пульты управления для GLL10M - GLL10R - GLL20R

- 4 КОНФИГУРАЦИИ ВЕНТИЛЯТОРНОГО ДОВОДЧИКА КАССЕТНОГО ТИПА:
 - С ЭЛЕКТРОПРИВОДОМ СТВОРОК ЖАЛЮЗИ, ПОЛОЖЕНИЕ КОТОРЫХ ЗАДАЕТСЯ С ПУЛЬТА ДИСТАНЦИОННОГО УПРАВЛЕНИЯ (ТОЛЬКО С GLL10M);
 - С РЕГУЛИРОВКОЙ ПОЛОЖЕНИЯ СТВОРОК ЖАЛЮЗИ ВРУЧНУЮ ПРИ ИСПОЛЬЗОВАНИИ ПУЛЬТА ДИСТАНЦИОННОГО УПРАВЛЕНИЯ;
 - С РЕГУЛИРОВКОЙ ПОЛОЖЕНИЯ СТВОРОК ЖАЛЮЗИ ВРУЧНУЮ ПРИ ИСПОЛЬЗОВАНИИ НАСТЕННОЙ ПАНЕЛИ УПРАВЛЕНИЯ;
 - С РЕГУЛИРОВКОЙ ПОЛОЖЕНИЯ СТВОРОК ЖАЛЮЗИ ВРУЧНУЮ, ЭЛЕКТРОННЫЙ ТЕРМОСТАТ СИСТЕМЫ VMF, НАСТЕННАЯ ПАНЕЛЬ УПРАВЛЕНИЯ (VMF-E4) ПОЛНОСТЬЮ ИНТЕГРИРОВАННА С СИСТЕМОЙ VMF (ТОЛЬКО С GLL10N И GLL20N)
- В СТАНДАРТНОЙ КОМПЛЕКТАЦИИ ТРЕХХОДОВОЙ ВЕНТИЛЬ С БЫСТРОСЪЕМНЫМ ПРИВОДОМ И ВИЗУАЛЬНОЙ ИНДИКАЦИЕЙ РАБОТЫ;
- ВОЗМОЖНОСТЬ УСТАНОВКИ ДВУХПОЗИЦИОННОГО ВЕНТИЛЯ ДЛЯ ИСПОЛЬЗОВАНИЯ В СИСТЕМАХ С ПЕРЕМЕННЫМ РАСХОДОМ ВОДЫ.
- ВЕРСИЯ БЕЗ КЛАПАНОВ
- ТЕПЛООБМЕННИКИ С РАЗВИТЫМ ПРОФИЛЕМИ УВЕЛИЧЕННОЙ ПЛОШАДЬЮ ПОВЕРХНОСТИ.
- СПЕЦИАЛЬНАЯ КОНСТРУКЦИЯ ВЕНТИЛЯТОРОВ, ОБЕСПЕЧИВАЮЩАЯ НИЗКИЙ УРОВЕНЬ ШУМА
- МОДИФИКАЦИИ ДЛЯ ДВУХ И ЧЕТЫРЕХТРУБНЫХ СИСТЕМ
- ВОЗМОЖНОСТЬ ПРИМЕНЕНИЯ ЭЛЕКТРОНАГРЕВАТЕЛЬНОГО ЭЛЕМЕНТА ДЛЯ НАГРЕВА ВОЗДУХА.

Особенности

- 8 типоразмеров для двухтрубных систем: FCL 32-36-42-62-72-82-102-122
- 7 типоразмеров для четырехтрубных систем: FCL 34-38-44-64-84-104-124
- В стандартной комплектации возможность установки встроенного трехпозиционного вентиля с простым подключением актуатора и визуализацией положения вентиля
- ра и визуализацией положения вентиля

 Модификация FCL V2: возможность установки встроенного двухпозиционного вентиля (по специальному заказу) для систем с переменным расходом воды.
- Модификация FCL VL: конфигурация без вентиля (по специальному заказу).
- Три конфигурации для одного и того же вентиляторного доводчика кассетного типа:
 с регулировкой положения створок жалюзи с помощью пульта дистанционного управления при использовании панели GLL 10 М
 с пультом дистанционного управления и
- с пультом дистанционного управления и регулировкой положения створок жалюзи вручную при использовании панели GLL 10 R или GLL20 R;
- с регулировкой положения створок жалюзи вручную при использовании панели GLL 10 R или GLL20 R и настенной панели управления
- Привлекательный дизайн корпуса
- Размеры вентиляторного доводчика, иде-

- ально соответствующие размерам стандартных потолочных панелей 600 х 600 мм и 840х840мм для более мошных блоков.
- Специальная конструкция вентиляторов, обеспечивающая низкий уровень шума.
- Трех или четырех скоростные вентиляторы центробежного типа в вентиляторных доводчиках больших типоразмеров (FCL42-44-62-64-72-82-84-102-104-122-124), возможность выбора трех скоростей вращения вентиляторов для обеспечения экономии энергопотребления и снижения уровня
- Аппараты имеют усиленную несущую конструкцию с боковым поясом из оцинкованной листовой стали и теплоизоляцию, выполненную из формованных пенополистирольных элементов, которые снижают уровень шума и обеспечивают подачу воздуха. (FCL 42-44-62-72-64).
- Аппараты имеют конструкцию, выполненную полностью из оцинкованной листовой стали, и теплоизоляцию из пенополиэтилена с закрытыми ячейками и противоконденсатным войлочным покрытием (FCL 82-84-102-104-122-124).
- Цельнометаллический поддон для сбора конденсата с пожаростойкостью по классу

- V0 и защитным покрытием из вспененного полистирола с огнестойкими добавками.
- Теплообменники с развитым профилем поверхности, увеличивающим поверхность теплообмена.
- Непрерывная работа вентилятора, предотвращающая стратификацию воздуха в помещении.
- Возможность подачи наружного воздуха в помещение независимо от режима работы вентиляторного доводчика.
- Возможность подачи кондиционированного воздуха в соседнее помещение. FCL 82-84-102-104-122-124 позволяют рас-
- пределять воздух в 3-х направлениях.
 Легко сменяемые воздушные фильтры, обладающие высокой эффективностью характеризующиеся низким падением давления, пожаростойкостью класса V0 по стандарту (UL 94).
- Электростатические воздушные фильтры с предварительной зарядкой, регенерируемые, 2 класс огнестойкости (UL 900), (FEL 10 предназначен для GLL10, GLL10R, GLL10M).
- Полное соответствие правилам техники безопасности.
- Простота монтажа и обслуживания.

Панели GLL - оборудование, необходимое для функционирования вентиляторного доводчика FCL:

GLL10M (600x600)

Воздуховыводящая решетка со створками жалюзи, регулируемыми с помощью пульта дистанционного управления. Имеется встроенный приемник инфракрасных сигналов. Цвет белый RAL 9010.

• GLL10R (600x600)

GLL20R (840x840)

Воздуховыводящая решетка со створками жалюзи, регулируемыми вручную. Поставляется вместе с пультом дистанционного управления с встроенным приемником инфракрасных сигналов с аварийным выключателем. Цвет белый RAL 9010.

• GLL10 (600x600)

GLL20 (840x840)

Воздуховыводящая решетка со створками жалюзи, регулируемыми вручную. Применяется в сочетании с настенной панелью управления. Цвет белый RAL 9010.

• GLL10N (600x600)

GLL20N (840x840)

Всасывающие и напорные решетки, регулируемыми вручную с системой VMF, оборудованные электронным термостатом. Для отдельных блоков или сети Мастер требуется пульт управления (VMF-E4 обязательный аксессуар). Цвет белый RAL 9010

• Панели управления и система VMF: характеристики и описание

Дополнительное оборудование:

FCLMC10

FCLMC20

Представляет собой периферийное обрамление, выполненное из оцинкованной и окрашенной листовой стали, которое используется при установке снаружи подвесного потолка. Обрамление выполняет эстетическую и защитную функцию. Остальные характеристики аппарата FCL и FCLI остаются без изменений.

- FEL10: Регенерируемый электростатический Воздушный фильтр пожаростойкость класс 2 (по стандарту UL 900).
- **KFL:** Напорный фланец для подачи воздуха в смежное помещение.
- KFL20 (***): Напорный фланец для подачи воздуха в смежное помещение. На один аппарат можно установить до трех фланцев
- KFLD: Всасывающий фланец, служащий для подачи наружного воздуха в помещения без смешения с кондиционированным воздухом.
- KFLD20 (***): Всасывающий фланец, служащий для подачи наружного воздуха в помещения без смешения с кондиционированным воздухом. На один аппарат можно установить до трех фланцев KFL20D.
- RXLE RXLE20: Электрический нагреватель для отопительной системы устанавливается на аппараты FCL. Эта принадлежность используется только с моделями FCL, оборудованные решетками серии GLL-М или GLL-R.
- SIT 3-5: Интерфейсные карты термостата, позволяющие объединить в единую сеть до шести вентиляторных доводчиков и управлять их работой с общей панели централизованного управления (с помощью селектора или термостата).
- SIT3: Интерфейсная карта, которой оборудуется каждый вентиляторный доводчик, входящий в единую сеть. Получает команды от селектора режимов или от карты SIT5, задает одну из трех скоростей вращения вентилятора.
- SIT5: Интерфейсная карта, управляющая работой двух вентилей (в четырехтрубных системах) и задающая одну из трех скоростей вращения вентилятора. Передает команды термостата вентиляторным доводчикам в сети, оснащенных SIT3.
- SW3: Датчик мин. температуры теплоносителя для использования с электронным термостатом-панелью РХАЕ.

- SW4: Датчик мин. температуры теплоносителя для использования с воздухораздающей решеткой с опцией дистанционного управления. Используется только с моделя-, ми FCL, оборудованные решетками серии GLL-M, GLL-R, GLL-N.
- **SWA:** Внешний датчик температуры SWA, применяется в сочетании с панелью управления FMT 20AW. Датчик определяет температуру окружающего воздуха при подключении к разъему (А); при этом датчик температуры окружающего воздуха, встроенный в пульт, автоматически деактивируется. Определяет температуру воды в системе для управления вентиляцией при подключении к разъему (W). Датчик укомплектован кабелем длиной 6 м.
- VHL1-VHL20: Трехпозиционный вентиль с электроприводом, управляющий работой нагревательного теплообменника в четырехтрубных системах. Обязателен для применения в четырехтрубных системах.
- VHL2-VHL22: Двухпозиционный вентиль с электроприводом, управляющий работой нагревательного теплообменника в четырехтрубных системах. Обязателен для применения в четырехтрубных системах с переменным расходом воды.

				(Совмести	мость до	полнител	ьного обс	рудовані	ЛЯ				
Модель. FC	32	34	36	38	42	44	62	64	82	84	102	104	122	124
GLL10	~	/	/	V	V	/	V	V						
GLL10M	~	/	/	V	V	/	V	V		·				
GLL10R	~	/	/	V	V	/	V	V		·				
GLL20									/	V	~	V	~	~
GLL20R									V	V	/	V	V	~
FCLMC10	V	/	/	/	/	/	V	/						
FEL10	V	/	/	/	/	/	V	/						
KFL		V	<u> </u>											
KFL20***									/	<u> </u>	<u> </u>	V		
KFLD	<u> </u>	/	<u> </u>	<u> </u>	<u> </u>	/	<u> </u>	<u> </u>						
KFLD20***									/	/	<u> </u>	V		
RXLE**	~		/		V		V							
RXLE20**									/		<u> </u>		<u> </u>	
SW3*	~	V	/	/	V	/	/	V	/	/	<u> </u>	V	<u> </u>	
SW4**	~	V	/	<u> </u>	V	/	<u> </u>	/	/	/	<u> </u>	V	<u> </u>	
SWA*	<u> </u>	V	/	<u> </u>	V	/	<u> </u>	<u> </u>	/	<u> </u>	<u> </u>	V	<u> </u>	
VHL1		V		<u> </u>		V		~						
VHL20										<u> </u>		V		
VHL2		V		<u> </u>		/		<u> </u>						
VHL22										<u> </u>		V		
SIT 3*		/	<u> </u>	<u> </u>	/	/	<u> </u>	<u> </u>	/	<u> </u>	<u> </u>	V	<u> </u>	
SIT 5*		V	<u> </u>	<u> </u>	<u> </u>	/	<u> </u>	<u> </u>	/	<u> </u>	<u> </u>	V	<u> </u>	
FMT10*		V	<u> </u>	<u> </u>	<u> </u>	/		<u> </u>	/	<u> </u>	<u> </u>	V		
FMT20AW*	V	V	V	V	V	/	V	V	/	V	V	V	V	
PX*	V	/	/	V	/	/	/	/	/	V	V	V	V	~
PX2* -	~	~	~	~	~	~	~	~	~	~	~	~	~	~
PX2C6****			-19											
PXAE*	V	/	V	V	V	/	V	V	/	V	V	V	V	~
WMT10*	~	V	V	V	/	V	/	V	V	V	V	V	V	~

^{*=} Оборудование, которое может быть использовано только в **** = PX2C6, PX2 в комплекте из 6 установок сочетании с панелями GLL10 и GLL20 ***** = Оборудование, которое может быть ис **** = SW4 требуются панеля GLL-M или GLL-R в сочетании с панелями GLL10N и GLLI

⁼ максимально три KFL20/KFL20D могут быть установлены на один блок

⁼ Оборудование,которое может быть использовано только в сочетании с панелями GLLI10N и GLLI20N для отдельных аппаратов или объединенных в локальную сеть.

Технические характеристики

Технические характеристики										
Mod. FCL	2 - трубная версия		32	36	42	62	72	82	102	122
Теплопроизводительность 50°C (E)	Скорость (тах)	W	2380	3750	4950	6250	6750	7100	10600	13000
Расход воды 50°C	Скорость (тах)	l/h	327	516	679	857	939	1032	1548	1892
Падение давления (VL) 50°C (E)	Скорость (тах)	kPa	9	14	23	32	38	23	25	34
Полная холодопроизводительность (Е)	Скорость (тах.)	W	1900	3000	3950	4980	5460	6000	9000	11000
Явная холодопроизводительность (Е)	Скорость (тах.)	W	1520	2400	3160	3810	4100	4200	6660	8470
Расход воды	Скорость (тах.)	l/h	327	516	679	857	939	1032	1548	1892
Падение давления (VL) (E)	Скорость (тах.)	kPa	10	15	25	36	43	25	28	38
	Скорость 4	m ³ /h	-	-	700	880	900	1100	1350	1750
Расход воздуха (Е)	Скорость 3	m ³ /h	600	600	530	660	680	830	1010	1350
тасход воздуха (Е)	Скорость 2	m ³ /h	410	410	360	500	520	680	830	1100
	Скорость 1 (min)	m ³ /h	300	300	260	380	400	460	560	750
Количество вентиляторов		n.	1	1	1	1	1	1	1	1
Акустическая мощность (Е)	Скорость (тах.)	dB(A)	46	46	53	61	63	50	54	60
	Скорость 4	dB(A)	-	-	44	52	54	41	45	51
201//2002 1201/201/20	Скорость 3	dB(A)	37	37	37	45	47	36	39	45
Звуковое давление	Скорость 2	dB(A)	29	29	29	38	40	34	36	41
	Скорость 1 (min.)	dB(A)	26	26	26	32	34	30	31	35
Объем теплообменника		1	1,2	1,5	1,5	2,1	2,1	3	4,5	4,5
Трубопроводные соединения		Ø Gas	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"
Kvs станд.клапана (3 рядн. т/о)			2,5	2,5	2,5	2,5	2,5	4	4	4
Потребляемая мощность (Е)	(max.)	W	45	45	75	83	93	150	155	175
Потребляемый ток	(max.)	Α	0,22	0,22	0,33	0,37	0,4	0,70	0,69	0,75
Пусковой ток		A	0,66	0,66	0,99	1,11	1,2	2,10	2,07	2,25
Mod. FCL	4 TOUGUSE DODGUE		34	38	44	64	84	104	124	-
Теплопроизводительность 70°С (E)	4 - трубная версия Скорость (max)	W	2600	2600	3070	3800	8500	10000	12500	
Расход воды 70°C	Скорость (тах)	l/h	224	224	264	327	731	860	1075	
Падение давления 70°C (VL) (E)	Скорость (тах)	kPa	11	11	14	21	14	19	29	-
Полная холодопроизводительность (Е)	Скорость (тах.)	W	1900	2770	3650	4610	6000	7200	8800	
Явная холодопроизводительность (Е)	Скорость (тах.)	W	1520	2240	2920	3530	4200	5300	6770	-
Расход воды (Е)	Скорость (тах.)		327	476	628	793	1032	1238	1514	
Падение давления (VL) (E)	Скорость (тах.)	kPa	10	13	22	31	25	26	38	-
Падение давления (VL) (L)	Скорость 4	m ³ /h	-	-	700	880	1100	1350	1750	
	Скорость 3	m ³ /h	600	600	530	660	830	1010	1350	-
Расход воздуха (E)	Скорость 2	m ³ /h	410	410	360	500	680	830	1100	-
	Скорость 1 (min)	m ³ /h	300	300	260	380	460	560	750	
Количество вентиляторов	n.		1	1	1	1	1	1	1	-
Акустическая мощность (Е)	Скорость (тах.)	dB(A)	46	46	53	61	50	 54	60	
лкустическая мощность (д)	Скорость 4	dB(A)	-	-	44	52	41	45	51	-
	Скорость 3	dB(A)	37	37	37	45	36	39	45	
Звуковое давление	Скорость 2	dB(A)	29	29	29	38	34	36	41	-
	Скорость 1 (min.)	dB(A)	26	26	26	32	30	31	35	
Объем теплообменника	Т	ab(/t)	1,2	1,5	1,5	2,1	3	4,5	4,5	
Объем теплообменника (горяч. вода)	<u>'</u>		0,3	0,5	0,5	0,6	1,5	1,5	1,5	-
Трубопроводные соединения	Ø Gas		3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	
Трубопроводные соединения (горяч. вода)			1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	
kVs станд. клапана (3 рядн. т/о)			2,5	2,5	2,5	2,5	4	4	4	-
kVs клапана (горяч. вода)			1,6	1,6	1,6	1,6	2,5	2,5	2,5	•
Потребляемая мощность (Е)	(max.)	W	45	45	75	83	150	155	175	•
Потребляемый ток	(max.)	A	0,22	0,22	0,33	0,37	0,70	0,69	0,75	
Пусковой ток		A	0,66	0,66	0,99	1,11	2,10	2,07	2,25	•
			-,00	-,00	-,	.,	_,	_, _,	_,	

Электропитание: 230 В (однофазное), 50 Гц.

(E) – характеристики, соответствующие сертификации EUROVENT

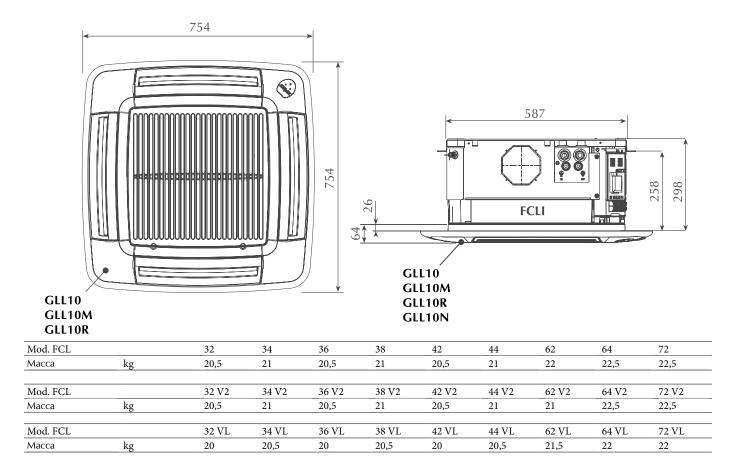
Производительность одинаковая для всех конфигураций: FCL (стандарт), FCL V2 и FCL VL.

Указанные технические характеристики относятся к следующим условиям:

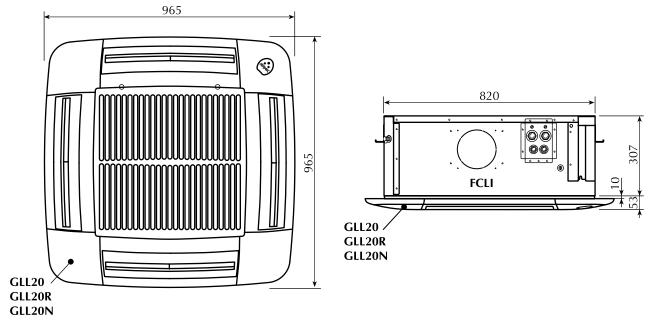
Звуковое давление измерено в полуреверберационной испытательной камере объемом 100 м3 с временем реверберации Tr = 0.5 c.

Охлаждение:

- темп. воздуха в помещении 27°C по сухому термометру, 19°C по
- мокрому термометру; темп. воды на входе 7°C; разность температур воды $\Delta t = 5$ °C максимальная скорость вентилятора.


🔲 Нагрев:

- темп. воздуха в помещении 20° C; темпе. воды на входе 70° C, разность температур воды $\Delta t = 10^{\circ}$ C; максимальная скорость вентилятора;


Ш Нагрев*:

- темп. воздуха в помещении 20°C;
- темп. воды на входе 50°C;
- максимальная скорость вентилятора.

FCL 32 - 34 - 36 - 38 - 42 - 44 - 62 - 64 - 72 FCL 32 V2 - 34 V2 - 36 V2 - 38 V2 - 42 V2 - 44 V2 - 62 V2 - 64 V2 - 72 V2 FCL 32 VL - 34 VL - 36 VL - 38 VL - 42 VL - 44 VL - 62 VL - 64 VL - 72 VL

FCL 82 - 84 - 102 - 104 - 122 - 124 FCL 82 V2 - 84 V2 - 102 V2 - 104 V2 - 122 V2 - 124 V2 FCL 82 VL - 84 VL - 102 VL - 104 VL - 122 VL - 124 VL

Mod. FCL		82	84	102	104	122	124
Macca	kg	35	36	36	36	36	36
Mod. FCL		82 V2	84 V2	102 V2	104 V2	122 V2	124 V2
Macca	kg	35	36	36	36	36	36
Mod. FCL		32 VL	34 VL	102 VL	104 VL	122 VL	124 VL
Масса	kg	34	35	35	35	35	35

FCLI

Вентиляторные доводчики кассетного типа для установки на подвесном потолке с инверторным двигателем вентилятора с холодопроизводительностью от 1900 до 11000 Вт

Aermec adheres to the EUROVENT Certification Programme.

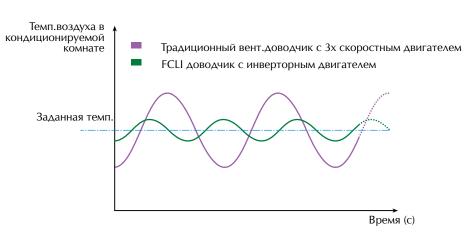
The products concerned appear in the EUROVENT Certified Products Guide.

Variable Multi Flew®
VMF

Будущее за инверторной технологией.

FCLI – вентиляторные доводчики кассетного типа компании AERMEC с возможностью непрерывного регулирования скорости воздуха от 0 до 100% постоянного контроля над холодо или теплопроизводительностью. Благодаря инверторной технологии, FCLI непрерывно подстраивает воздушный поток в соответствии с текущим состоянием в помещении. Это дает ощутимые преимущества в энергосбережении, комфорте и уменьшении шума по сравнению с традиционными 3х скоростными вениляторными доводчиками.

- ЭКОНОМИЯ ЭНЕРГИИ ДО 50% ПО СРАВНЕНИЮ С ТРАДИЦИОННЫМИ ВЕНИЛЯТОРНЫМИ ДОВОДЧИКАМИ, ОСНАЩЕННЫМИ ЗХ СКОРОСТНЫМИ ДВИГАТЕЛЯМИ
- СВЕРХМАЛОШУМНОЕ ИСПОЛНЕНИЕ
- КОМФОРТАБЕЛЬНОСТЬ МАЛЫЕ ВАРИАЦИИ ТЕМПЕРАТУРЫ И ВЛАЖНОСТИ В КОНДИЦИОНИРУЕМОМ ПОМЕЩЕНИИ
- В СТАНДАРТНОЙ КОМПЛЕКТАЦИИ ТРЕХХОДОВОЙ ВЕНТИЛЬ С БЫСТРОСЪЕМНЫМ ПРИВОДОМ И ВИЗУАЛЬНОЙ ИНДИКАЦИЕЙ РАБОТЫ
- МОДИФИКАЦИЯ С ДВУХХОДОВЫМ ВЕНТИЛЕМ ДЛЯ ИСПОЛЬЗОВАНИЯ В СИСТЕМАХ С ПЕРЕМЕННЫМ РАСХОДОМ ВОДЫ
- МОДИФИКАЦИИ БЕЗ ВОДЯНОГО РЕГУЛИРУЮЩЕГО ВЕНТИЛЯ
- ТЕПЛООБМЕННИКИ С РАЗВИТЫМ ПРОФИЛЕМ И УВЕЛИЧЕННОЙ ПЛОЩАДЬЮ ПОВЕРХНОСТИ
- ВЕНТИЛЯТОРЫ С ПОНИЖЕННЫМ УРОВНЕМ ШУМА
- МОДИФИКАЦИИ ДЛЯ ДВУХ И ЧЕТЫРЕХТРУБНЫХ СИСТЕМ


Особенности

- Вентиляторный блок с бесщеточным инверторным двигателем с регулировкой скорости от 0 до 100%;
- 5 типоразмеров для двухтрубных систем: FCL 32-42-62-82-122
- 4 типоразмера для четырехтрубных систем: FCL 34-44-64-124
- В стандартной комплектации возможность установки встроенного трехпозиционного вентиля с простым подключением актуатора и визуализацией положения вентиля.
- Модификация FCL V2: возможность установки встроенного двухпозиционного вентиля (по специальному заказу) для систем с переменным расходом воды.
- Модификация FCL VL: конфигурация без вентиля (по специальному заказу).
- Привлекательный дизайн корпуса.
- Размеры вентиляторного доводчика, идеально соответствующие размерам стандарт-

- ных потолочных панелей (600 х 600 мм).
- Специальная конструкция вентиляторов, обеспечивающая низкий уровень шума.
- Сертификация EUROVENT.
- Несущая конструкция корпуса с пространственной структурой из оцинкованной стали.
- Внутренние элементы корпуса с изоляционным слоем из полиэстера, наносимого экструзией под давлением и обеспечивающего снижение уровня шума и уменьшению сопротивления потока воздуха.
- Цельнометаллический поддон для сбора конденсата с пожаростойкостью по классу V0 и защитным покрытием из вспененного полистирола с огнестойкими добавками.
- Теплообменники с развитым профилем поверхности, увеличивающим поверхность теплообмена.
- Возможность подачи наружного воздуха в помещение независимо от режима

- работы вентиляторного доводчика.
- Возможность подачи кондиционированного воздуха в соседнее помещение.
- Легко сменяемые воздушные фильтры, снабженные несущей рамой, обладающие высокой эффективностью и характеризующиеся низким падением давления (пожаростойкость класса V0 по стандарту UL 94, дополнительное оборудование)
- Регенерируемые электростатические воздушные фильтры (пожаростойкость класса 2 по стандарту UL 900, дополнительное оборудование).
- Полное соответствие правилам техники безопасности.
- Простота монтажа и обслуживания.

Бесщеточный электрический двигатель

Бесщеточный двигатель – результат наиболее технологичных решений в механике и электронике.

«Бесщеточный» двигатель не имеет щеток и, соответственно, механического контакта между статором и ротором. Ротор состоит из постоянных магнитов, чье магнитное поле взаимодействует с катушками статора. Специальное устройство – «инвертор» позволяет постоянно задавать и контролировать скорость и момент вращения ротора.

По сравнению с традиционным двигателем переменного тока, бесщеточный мотор имеет огромные преимущества:

- уменьшенный износ
- возможность точной регулировки скорости вращения в диапазоне 0-100%
- лучшие показатели энергоэффективности увеличенное время работы большую надежность

Эти преимущества делают инверторный двигатель незаменимым в областях:

- робототехники
- автомобилестроения
- высокоточных устройств
- CD/DVD устройств
- медицинского оборудования и других.

Благодаря FCLI доводчикам компании AERMEC инверторная технология находит свое применение в технике кондиционирования систем: чиллервентиляторный доводчик, позволяя получить энергосбережение одновременно с точным контролем температуры и влажности в помещениях.

Дополниельное оборудование

Оборудование, необходимое для функционирования вентиляторного доводчика: GLLI 10 и GLLI 20: Воздуховыводящая и воздуховыводящая решетка со створками жалюзи, регулируемыми вручную. Применяется в сочетании с настенной панелью управления.

Цвет белый (RAL 9010).

WMT20: Панель управления с электронным термостатом и ЖК экраном. Устанавливается на стене помещения.

Необязательное дополнительное оборудование:

FEL10: Регенерируемые электростатические воздушные фильтры (пожаростойкость класса 2 по стандарту UL 900)

KFL: Комплект оборудования, включающий металлический фланец диаметром 100 мм, служащий для подачи кондиционированного воздуха в соседнее помещение.

KFLD: Комплект оборудования, включающий металлический фланец диаметром 100 мм и перемычку из листовой оцинкованной стали с изоляционным покрытием, служащий для подачи наружного воздуха в помещения без

смешения с кондиционированным воздухом.

VHL1: Трехходовой клапан с приводом для теплообменника горячей воды в 4х трубных системах. Необходим для работы 4х трубной системы.

VHL2: Трехходовой клапан с приводом для теплообменника горячей воды в 4х трубных системах. Необходим для работы 4х трубной системы при переменном расходе воды.

SW1: Датчик температуры воды, работающий в сочетании с панелью WMT20. Длина соединительного кабеля 2м.

		Co	вместимость д	ополнительног	о оборудовани	Я			
Модель FCLI	32	34	42	44	62	64	82	122	124
GLLI10	~	~	~	~	~	~			
GLLI20							~	~	~
WMT20	~	~	~	~	V	~	~	~	~
FCLMC10	~	V	V	~	V	~			
FEL10	~	V	V	~	V	V			
KFL	~	V	V	~	V	V			
KFL20							~	V	V
KFLD	~	V	V	~	V	V			
KFLD20							~	V	~
VHL1		V		~		V			~
VHL2		V		~		V			~
SWI	V	<u> </u>	V	V	<i>V</i>	~	~	~	V

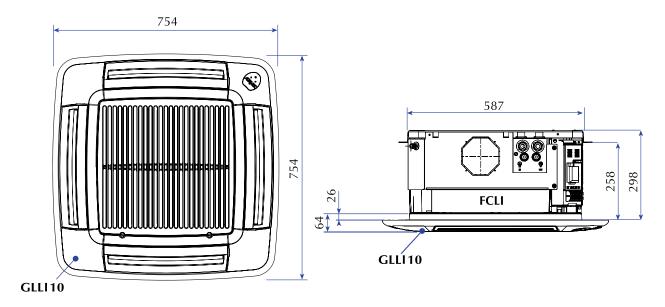
Mod. FCLI	2-трубная мод	дель	32	42	62	82	122
Теплопроизводительность 50°C (E)	speed (max)	W	2380	4950	6250	7100	13000
Падение давления (VL) 50°C (E)	speed (max)	kPa	9	23	16	21	34
Холодопроизводительность (Е)	speed (max)	W	1900	3950	4980	6000	11000
Холодопроизводительность (Е)	speed (max)	W	1520	3160	3815	4200	8470
Расход воды	speed (max.)	l/h	327	679	857	1032	1892
Падение давления (VL) (E)	speed (max)	kPa	10	25	36	25	38
Расход воздуха (Е)	speed (max)	m³/h	600	700	880	1100	1750
т асход воздуха (L)	speed (min)	m³/h	150	150	150	350	350
Количество вентиляторов	Штук		1	1	1	1	1
Звуковая мощность (Е)	speed (max)	dB(A)	46	53	61	50	60
2011/2002 12012	speed (max)	dB(A)	37	42	52	41	51
Звуковое давление	speed (min)	dB(A)	22	23	24	31	31
Объем теплообменника		I	1,2	1,5	2,1	3,0	4,5
Трубопр. соединения			3/4"	3/4"	3/4"	3/4"	3/4"
kVs станд.клапана (3 рядн. т/о)			2,5	2,5	2,5	4,0	4,0
Потребляемая мощность (Е)	(max)	W	33	55	61	80	90
Потребляемый ток	(max)	Α	0,28	0,43	0,47	0,71	0,80

Mod. FCLI	4-трубная мод	дель	34	44	64	124
Теплопроизводительность 70°C (E)	speed (max)	W	2600	3070	3800	12500
Расход воды 70°C		l/h	224	264	327	1075
Падение давления (VL) 70°C (E)		kPa	11	14	21	29
Холодопроизводительность (Е)	speed (max)	W	1900	3650	4610	8800
Холодопроизводительность (Е)	speed (max)	W	1520	2920	3530	6770
Расход воды	speed (max.)	l/h	327	628	793	1514
Падение давления (VL) (E)	speed (max)	kPa	10	22	31	38
Расход воздуха (Е)	speed (max)	m³/h	600	700	880	1750
т асход воздуха (L)	speed (min)	m³/h	150	150	150	350
Количество вентиляторов			1	1	1	1
Звуковая мощность (Е)	speed (max)	dB(A)	46	53	61	60
2011/2002 12012	speed (max)	dB(A)	37	42	52	51
Звуковое давление	speed (min)	dB(A)	22	23	24	31
Объем теплообменника		I	1,2	1,5	2,1	4,5
Объем теплообменника		l	0,3	0,5	1,5	4,5
Трубопр. соединения		Ø Gas	3/4"	3/4"	3/4"	3/4"
Трубопр. соединения горяч. вода		Ø Gas	1/2"	1/2"	1/2"	1/2"
kVs станд.клапана (3 рядн. т/о)			2,5	2,5	2,5	4
kVs клапана горяч.воды			2,5	2,5	2,5	2,5
Потребляемая мощность (Е)	(max)	W	33	55	61	90
Потребляемый ток	(max)	Α	0,28	0,43	0,47	0,80

Электропитание – 230 В (однофазное), 50 Гц

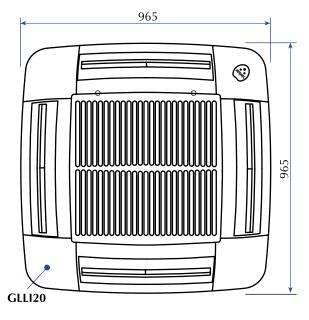
(E) = сертифицировано EUROVENT

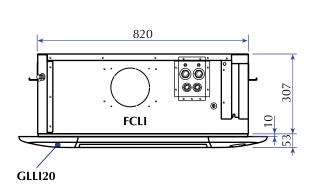
Производительность одинакова для всех модификаций: FCL (стандарт), FCL V2 и FCL VL.


Указанные технические характеристики относятся к следующим

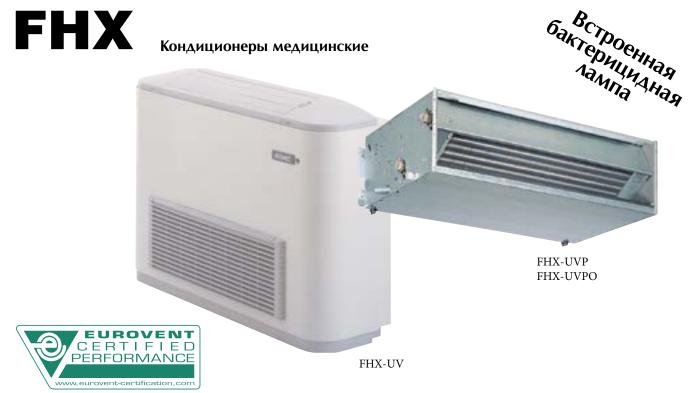
- Указанные технические характеристики относятся к следующим условиям:
 Звуковое давление измерено в полуреверберационной испытательной камере объемом 100 м³ с временем реверберации Tr = 0,5 с.
 Охлаждение:
 температура воздуха в помещении 27°С по сухому термометру, 19 °С по мокрому термометру;
 температура воды на входе 7°С;
 максимальная скорость вентилятора;
 разность температур воды Δt = 5°С.

— Нагрев:


- температура воздуха в помещении 20° C; температура воды на входе 70° C, $\Delta t = 10^{\circ}$ C;
- температура воды на входе 50°C, максимальная скорость вентилятора; расход воды тот же, что в режиме охлаждения.


FCLI 32 - 34 - 42 - 44 - 62 - 64 FCLI 32 V2 - 34 V2 - 42 V2 - 44 V2 - 62 V2 - 64 V2 FCLI 32 VL - 34 VL - 42 VL - 44 VL - 62 VL - 64 VL

Mod. FCLI		32	34	42	44	62	64
Масса	kg	20.5	21	20.5	21	22	22.5
Mod. FCLI		32 V2	34 V2	42 V2	44 V2	62 V2	64 V2
Macca	kg	20.5	21	20.5	21	21	22.5
Mod. FCLI		32 VL	34 VL	42 VL	44 VL	62 VL	64 VL
Macca	kg	20	20.5	20	20.5	21.5	22


FCLI 82 - 122 - 124 FCLI 82 V2 - 122 V2 - 124 V2 FCLI 82 VL - 122 VL - 124 VL

Mod. FCLI		82	122	124
Macca	kg	35	36	36
Mod. FCLI		82 V2	122 V2	124 V2
Macca	kg	35	36	36
Mod. FCLI		32 VL	122 VL	124 VL
Macca	kg	34	35	35

Aermec adheres to the EUROVENT Certification

programme. The products concerned appear in the EUROVENT Certified Products Guide.

> Вентиляторные доводчики серии FHX обладают уникальными свойствами стерилизации воздуха, что делает их применение особенно

целесообразным в местах, к которым предъявляются повышенные

гигиенические требования:

- в больницах;
- в стоматологических клиниках:
- в мелицинских пунктах:
- в медицинских лабораториях в фармакологическом производстве;
- · в залах ожидания;
- в институтах красоты; • в жилых помещениях;
- в офисах;
- в местах скопления людей.

Особенности

- Шесть типоразмеров и три модификации: **FHX-A:** Высокий корпус с встроенной панелью управления для напольной установки;
 - **FHXP:** Модель без корпуса;
 - **FHX-PO:** Модель без корпуса с электромотором повышенной мощности и семью скоро-. стями вращения (три скорости по выбору).
- Сертификация по стандарту EUROVENT.
- Уникальная система стерилизации воздуха с помощью бактерицидной лампы: эффективность уничтожения грамположительных и грамотрицательных бактерий 99,999%.
- Встроенный ионизатор воздуха.

- Воздушный фильтр на основе активированного угля.
- Визуальная индикация состояния бактерицидной лампы.
- Визуальная индикация состояния воздушного фильтра.
- Трехскоростная регулировка вентиляционного агрегата.
- Полное соответствие нормам безопасности.
- Плавные обводы корпуса.
- Низкий уровень шума.
- Низкие тепловые потери в теплообменниках.
- Электромоторы с постоянно подключенными конденсаторами.

- Простота монтажа и обслуживания.
- Простота демонтажа и очистки фильтра.
- Микропроцессорная панель управления с термостатом на корпусе вентиляторного доводчика (модель FHX-A, стандартная комплектация) или на стене помещения (модификации FHX-Р и РО, дополнительное оборудование).
- Металлический защитный корпус с антикоррозионным покрытием из полиэстера, цвет RAL9002 (FHX-A).
- Решетка воздуховыводящей камеры цвета RAL7044 (FHX-A).

ВС: Вспомогательный поддон для сбора конденсата.

BV: Однорядный водяной теплообменник.

GA: Жалюзи воздухозаборника с фиксированным положением створок.

GAF: Жалюзи воздухозаборника с фиксированным положением створок и филь-TDOM.

GM: Жалюзи воздуховыводящей системы с регулируемым положением створок.

РА: Воздухозаборная камера из оцинкованной листовой стали, оборудованная соединительным элементом для подклю чения к воздуховоду круглого сечения.

РАГ: Воздухозаборная камера, позволяющая осуществлять всасывание и выброс воздуха с одной стороны. Такая камера особенно удобна в тех случаях, когда вентиляторный доводчик устанавливает ся вне помещения, в которое подается кондиционированный воздух, что обес печивает снижение шума до минималь ного уровня и облегчает операции по техническому обслуживанию.

РС: Металлическая панель для закрытия задней стороны вентиляторного довод чика.

РМ: Воздуховыводящая камера из оцинко ванной стали с внешней теплоизоляцией с пластиковым соединительным элемен том для подключения к воздуховоду круглого сечения.

RD: Соединительный элемент для подклю чения воздуховыводящей системы к прямолинейному воздуховоду.

RDA: Соединительный элемент для под ключения воздухозаборной системы к прямолинейному воздуховоду.

RP: Соединительный элемент для подклю чения воздуховыводящей системы к воздуховоду под углом 90°.

RPA: Соединительный элемент для под ключения воздухозаборной системы к воздуховоду под углом

SE: Жалюзи для подачи свежего воздуха в помещение с регулируемыми вручную створками.

SIT 3-5: Интерфейсные карты термоста та, позволяющие объединить в единую сеть до десяти вентиляторных доводчиков и управлять их работой с общей панели централизованного управления (с помощью селектора или термостата).

SIT 3: Интерфейсная карта, которой оборудуется каждый вентиляторный довод чик, входящий в единую сеть. Получает команды от селектора реаеимов или от карты SIT 5, задает одну из трех скоростей врашения вентилятора.

SIT 5: «Главная» интерфейсная карта, управляю щая работой двух вентилей (в четырехтруб ных системах) и задающая одну из трех ско ростей вращения вентилятора. Передает команды термостата венти-

ляторным довод чикам, входящим в единую сеть.

SW: Датчик температуры воды, работаюший в сочетании с электронной панелью управления. Разрешает работу устройва только при температуре воды выше 35С.

VCF: Комплект оборудования, включа щий трехпозиционный вентиль, соединительные элементы и медные трубки. Применяется в сочетании с четырех и трехрядными теплообменниками и однорядными теплообменниками (BV). Имеются модификации с эдектропитанием от напряжения 230 В, 50 Гц или 24 В. Датчик SW3 должен использоваться с этой опцией. Комплект VCF, поддон BC и датчик SW3 монтируются на доводчик в процессе монтажа оборудо вания.

'CFD: Комплект оборудования, включа ющий двухпозиционный вентиль, соединительные элементы и медные трубки. Применяется в сочетании с четырех, трех и однорядными(BV) теплообменниками. Датчик SW3 должен использо ваться с этой опцией. Комплект VCF, поддон ВС и датчик SW3 монтируются на доводчик в процессе монтажа оборулования.

ZX: Опоры корпуса для скрытной установки доводчиков.

Доп.о	боруд	۸.			Типора	змер (F	HX)		Доп.о	боруд				Типора	змер ((FHX)	
-		22	32	42	50	62	82	Модификация			22	32	42	50	62	82	Модификация
	4	~	~	~	~	~	~	UV-UVP-UVPO		22	~						UVP-UVPO
	5	~	~	~	~	,		UV-UVP-UVPO		32		~					UVP-UVPO
D.C.	6					~	~	UV-UVP-UVPO	- RD	42			~	~			UVP-UVPO
BC	8*	~	~	~	~			UVP-UVPO	_	62					~	~	UVP-UVPO
	9*					~	~	UVP-UVPO		22	~						UVP-UVPO
	122	~						UV-UVP-UVPO	-	32		~					UVP-UVPO
	132		~					UV-UVP-UVPO	RDA	42			~	~			UVP-UVPO
BV	142			~	~			UV-UVP-UVPO	-	62					~	~	UVP-UVPO
	162					~	~	UV-UVP-UVPO		22	~						UVP-UVPO
	22	~						UVP-UVPO	_	32		~					UVP-UVPO
	32		~			,	,	UVP-UVPO	RP	42			~	~			UVP-UVPO
GA	42			~	~			UVP-UVPO	-	62					~	~	UVP-UVPO
	62					~	~	UVP-UVPO		22	~						UVP-UVPO
	22	~						UVP-UVPO	-	32		~					UVP-UVPO
	32		~					UVP-UVPO	RPA	42			~	~			UVP-UVPO
GAF	42			~	~			UVP-UVPO	-	62					~	~	UVP-UVPO
	62					~	~	UVP-UVPO		20X	~						UVP-UVPO
	22	~						UVP-UVPO	_	30X		~					UVP-UVPO
	32		~					UVP-UVPO	SE**	40X			~	~			UVP-UVPO
GM	42			~	~			UVP-UVPO	_	80X					~	~	UVP-UVPO
	62					~	~	UVP-UVPO	SIT3		~	~	~	~	~	~	UV-UVP-UVPO
	22	~						UVP-UVPO	SIT5		~	~	~	~	~	~	UV-UVP-UVPO
	32		~					UVP-UVPO	SW3		~	~	~	~	~	~	UV-UVP-UVPO
PA	42			~	~			UVP-UVPO		41	~	~					UV-UVP-UVPO
	62					~	~	UVP-UVPO	-	42			~	~			UV-UVP-UVPO
	22F	~						UVP-UVPO	_	43					~	~	UV-UVP-UVPO
	32F		~			,	,	UVP-UVPO	VCF	4124	~	~					UV-UVP-UVPO
PA	42F			~	~			UVP-UVPO	-	4224			~	~			UV-UVP-UVPO
	62F					~	~	UVP-UVPO	-	4324					~	~	UV-UVP-UVPO
	23	~						UV		1	~	~					UV-UVP-UVPO
	33		~					UV	_	2			~	~			UV-UVP-UVPO
PC	43			~	~			UV	-	3					~	~	UV-UVP-UVPO
	62					~	~	UV	VCFD	124	~	~					UV-UVP-UVPO
DM	22	~						UVP-UVPO	_	224			~	V			UV-UVP-UVPO
PM	32		~					UVP-UVPO		324					~	~	UV-UVP-UVPO
	42			~				UVP-UVPO		7	V	~	~	~			UVP-UVPO
	62					~	~	UVP-UVPO	- ZX	8					~	~	UVP-UVPO
PXAE		~	~	~		~	~	UV-UVP-UVPO									
PXAI		~	~	~		~	~	UV	-								

^(*) ВС8 и ВС9 не применяются с доводчиками в корпусе (**) SE опция применяется с опорами ZX

Mod.			FHX 22	FHX 32	FHX 42	FHX 50	FHX 62	FHX 82
	W (max.)		3400	4975	7400	8620	12920	15140
Теплопроизводительность	W (med.)		2700	4085	6415	7530	10940	13350
	W (min.)		1915	3380	5115	5420	8330	10770
Теплопроизводительность (вода на входе 50°C)	W (E)		2100	3160	4240	4900	6460	7990
Расход воды	l/h		292	427	636	741	1110	1300
Падение давления	kPa		6,3	14,2	14,1	14,2	14,8	19,8
	W (max.) (E)		1500	2210	3400	4190	4860	7420
Полная холодопроизвод.	W (med.)		1330	2055	2800	3640	4660	5500
	W (min.)		1055	1570	2310	2840	3950	4710
	W (max.) (E)		1240	1750	2760	3000	3980	5680
Явная холодопроизвод.	W (med.)		1055	1540	2115	2750	3510	4250
	W (min.)		755	1100	1635	2040	2825	3450
Расход воды	l/h		258	380	585	721	836	1276
Падение давления	kPa (E)		5,8	16,6	14,3	19,3	11,6	13,5
	m³/h (max.)		290	450	600	720	920	1140
Расход воздуха	m³/h (med.)		220	350	460	600	720	930
	m³/h (min.)		<u>1</u> 40	260	330	400	520	700
Количество вентиляторов	n.	,	<u>1</u>	2	2	2	3	3
	dB (A) (max.)		<u>4</u> 1,5	39,5	42,5	47,5	48,5	53,5
Звуковое давление	dB (A) (med.)		34,5	32,5	35,5	42,5	42,5	48,5
	dB (A) (min.)		22,5	25,5	28,5	33,5	33,5	41,5
	<u>dB (A) (max.) (E)</u>		50	48	51	56	57	62
Звуковая мощность	<u>dB (A) (med.) (E)</u>		43	41	44	51	51	57
	dB (A) (min.) (E)		31	34	37	42	42	50
Емкость			0,79	1,11	1,48	1,48	2,52	2,52
Потребляемая мощность	W	(FHX-UV / UVP)	50	69	82	92	182	206
Потреоляемая мощноств	V V	(FHX-UVPO)	<u>7</u> 9	122	136	107	197	235
Полный потребляемый ток	Α	(FHX-UV / UVP)	0,24	0,33	0,40	0,47	0,84	0,93
		(FHX-UVPO)	0,37	0,57	0,63	0,48	0,92	1,06
Трубопроводные соединения (3-х рядный			1/2"	1/2"	3/4"	3/4"	3/4"	3/4"
Трубопроводные соединения (1 рядный т/о	o)(BV)		1/2"	1/2"	1/2"	1/2"	1/2"	1/2"

Электропитание = 230V ~ 50Hz

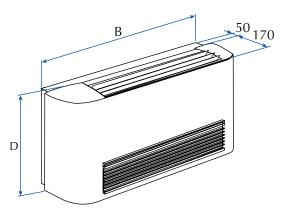
Указанные технические характеристики относятся к следующим

условиям:
Звуковое давление измерено в полуреверберационной испытательной камере объемом 100 м³ с временем реверберации Tr = 0,5 с.

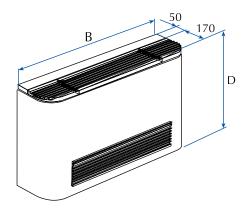
Охлаждение:

- температура воздуха в помещении 27°C по сухому термометру, 19°C по мокрому термометру; максимальная скорость:
- температура воды на входе 7°С; разность температур 5°С.
 средняя и низкая скорость:
 температура воды на входе 7°С;
- расход воды такой же, как на высокой скорости.

— Нагрев:

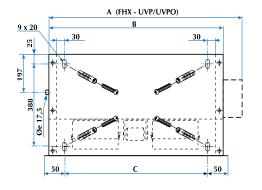

температура воздуха в помещении 20°C по сухому термометру; максимальная скорость:

- температура воды на входе 70°C, разность температур 10°C; средняя и низкая скорость:
- температура воды на входе 70°C, расход воды такой же, как

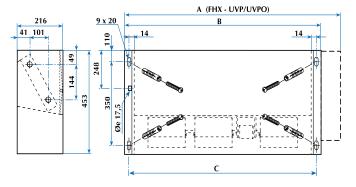

на высокой скорости.

максимальная скорость (при температуре воды 50 °C):

температура воды на входе 50 °C, расход воды такой же, как при работе на охлаждение.



FHX 22 UV - 32 UV - 42 UV - 50 UV



FHX 62 UV - 82 UV

Модель FHX		22 UV	32 UV	42 UV	50 UV	62 UV	82 UV
Высота	D	520	520	520	520	590	590
Ширина	E	750	980	1200	1200	1320	1320
Macca	kg	16	26	25	25	35	35

FHX 22 - 32 - 42 - 50 UVP FHX 22 - 32 - 42 - 50 UVPO

FHX 62 - 82 UVP FHX 62 - 82 UVPO

216

253

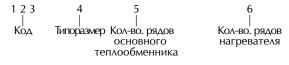
Модель FHX		22 UVP/UVPO	32 UVP/UVPO	42 UVP/UVPO	50 UVP/UVPO	62 UVP/UVPO	82 UVP/UVPO
	A	572	823	1043	1043	1205	1205
	В	522	753	973	973	1122	1122
	С	440	671	891	891	1102	1102
Macca	kg	16	26	25	25	35	35

VED

Неавтономный кондиционер с холодопроизводительностью от 8 до 18 кВт. Для канальных систем.

Aermec participates in the EUROVENT FCP Certification Program.

The products of interest appear in the EUROVENT Guide of Certified products.



- ШИРОКИЙ СПЕКТР АКСЕССУАРОВ
- ГОРИЗОНТАЛЬНАЯ ИЛИ ВЕРТИКАЛЬНАЯ УСТАНОВКА
- СОВМЕСТИМЫ С СИСТЕМОЙ УПРАВЛЕНИЯ VMF
- МОДИФИКАЦИИ ДЛЯ 2Х ИЛИ 4Х-ТРУБНЫХ СИСТЕМ
- ТЕПЛООБМЕННИК НАГРЕВА ТОЛЬКО С 1 ИЛИ 2 РЯДАМИ
- ШИРОКИЙ СПЕКТР ВОЗМОЖНЫХ СТАТИЧЕСКИХ ДАВЛЕНИЙ
- 5 СКОРОСТЕЙ ВЕНТИЛЯТОРА
- ЦЕНТРОБЕЖНЫЕ ВЕНТИЛЯТОРЫ ИЗ АНТИСТАТИЧЕСКОГО ПЛАСТИКА
- ДОСТУПНОЕ РАСПОЛОЖЕНИЕ ВЕНТИЛЯТОРНОГО АГРЕГАТА
- ВНУТРЕННЯЯ ИЗОЛЯЦИЯ СООТВЕТСТВУЕТ ПЕРВОМУ КЛАССУ ОГНЕЗАЩИТЫ
- ВОЗДУШНЫЙ ФИЛЬТР КЛАССА G3
- РЕВЕРСИВНЫЙ ТЕПЛООБМЕННИК (ПО СТОРОНЕ ПОДКЛЮЧЕНИЯ)

Выбор модификации

Комбинируя различные опции, можно подобрать такую модель серии VED, которая наиболее полно отвечает требованиям заказчика.

Кодовое обозначение опций:

Пример кодового обозначения:

(VED532 = Кондиционер 5-го типоразмера, с 3х.рядным основным теплообменником и 2х.рядным нагревателем)

Особенности

- Неавтономный кондиционер для канальных систем
- Сертифицирован EUROVENT по программе LCP
- Возможность горизонтальной или вертикальной установки
- Для установки внутри помещений
- Модель доступна в 4 типоразмерах и 4 конфигурациях
- Модификации для двухтрубных систем с 3х или 4х.рядными теплообменниками
- Модификации для четырёхтрубных систем с 3х или 4х.рядными основными теплообменниками и 1 или 2х. рядными нагревательными теплообенниками
- Возможность изменения стороны подключения теплообменников (реверса) на этапе монтажа оборудования
- Низкие потери давления в теплообменниках

- 3х.ходовой клапан в списке опций
- 2х.ходовой клапан в списке опций для работы с системами с переменным расходом
- 5 скоростей вентилятора, из которых 3 можно выбрать
- Широкий спектр возможных статических давлений
- Центробежные вентиляторы выполнены из антистатического пластика. Благодаря этому удалось снизить энергопотребление в сравнении с обычными вентиляторами
- Вентиляторы с аэродинамическим профилем лопатки, специально разработанным для высоких расходов и статических давлений в сочетании с низкой шумностью
- Данная модель совместима с системой управления VMF

- Широкий выбор контроллеров
- Широкий спектр аксессуаров чтобы удовлетворить все потребности заказчика
- Прямоугольные фланцы уже интегрированы в раму кондиционера
- Воздушный фильтр класса G3 с системой быстрого демонтажа для чистки и обслуживания
- Внутренняя изоляция соответствует классу 1 по огнестойкости
- Класс защиты IP20
- Простая установка и обслуживание
- Изготовлено в полном соответствии с правилами техники безопасности

- RDA V: Прямой патрубок с прямоугольным фланцем для подключения к воздуховоду. Из гальванизированной листовой стали.
- RPA_V: Заборный патрубок с прямоугольным фланцем для подключения к воздуховоду с разворотом потока на 90°. Из гальванизированной листовой стали
- PA_V: Воздухозаборная камера с круглым фланцем для подключения к воздуховоду. Из гальванизированной листовой стали.
- RPM_V: Воздухораспределительный пленум \bar{c} прямоугольным фланцем для подключения к воздуховоду. Из гальванизированной листовой стали, с внутренней золяцией.
- PM V: Воздухораспределительный пленум с круглыми фланцами для подключения к воздуховоду. Из гальванизированной листовой стали, с внутренней изоляцией, с фланцами из пластика.
- KFV: Круглый фланце для патрубков. Из пластика.
- VCF4_C: Комплект, состоящий из 3х.ходового клапана с приводом, изоляции, медных трубок и присоединительных элементов. Для основных теплообменников. Электропитание 230В ~ 50Гц

- VCF4_H: Комплект, состоящий из 3х.ходового клапана с приводом, изоляции, медных трубок и присоединительных элементов. Для нагревательных теплооб-менников. Электропитание 230В ~ 50Гц
- VCF2_C: Комплект, состоящий из 2х.ходового клапана с приводом, изоляции, медных трубок и присоединитель ных элементов. Для основных теплообменников. Электропитание 230В ~ 50 Гц
- VCF2_H: Комплект, состоящий из 2x.ходового клапана с приводом, изоляции, медных трубок и присоединительных элементов. Для нагревательных теплообменников. Электропитание 230В ~ 50Гц

ПАНЕЛИ УПРАВЛЕНИЯ

Характеристики панелей управления приведены отдельно. Некоторые панели управления требуют применения дополнительных элементов. Пожалуйста, обращайтесь к соответствующей документации.

АКСЕССУАРЫ ДЛЯ ПАНЕЛЕЙ УПРАВЛЕНИЯ

SIT3: интерфейсная карта термостата, ОБЯЗАТЕЛЬНАЯ опция для кондиционера серии VED при его работе с любыми пане-

- лями управления кроме системы VMF.
- SIT5: интерфейсная карта термостата. Позволяет создать сеть (максимально из 3 шт.) кондиционеров VED, управляющихся одним централизованным пультом РХАЕ.
- **SW3:** Датчик температуры воды использования совместно с панелью РХАЕ.

CUCTEMA VMF

(Система с переменным расходом) Система VMF: полные характеристики данной системы приведены в отдельном документе. Некоторые компоненты системы VMF требуют использования дополнительных компонентов. Пожалуйста, обращайтесь к соответствующей документации.

WMF-SIT3: интерфейсная карта термостата VMF. ОБЯЗАТЕЛЬНЫЙ аксессуар для кондиционеров VED, поставляемых с термостатами VMF-E0/E1.

Модель VED	430	432	440	441	530	СТИМОСТ 532	540	541	630	632	640	641	730	732	740	741
модель VED RDA 450 V	<u>430</u>	432 1	<u>440</u>	<u>441</u>	- 530 - V	532	<u>540</u>	- 541 •	030	032	040	041	/30	134	/40	/41
RDA 670 V									~	~		~		~		
RPA 450 V				~	~	~	~									
RPA 670 V									~	~	~		~			
PA 450 V				~	~	~		~								
PA 670 V									~	~	~	~	~		~	
RPM 450 V	~		~	~	~	~		~								
RPM 670 V									~	~	~	~	~	~	~	~
PM 450 V	~	~	~	~	~	~	~	~								
PM 670 V									~	~	~	~	~	~	~	·
KFV	~	~	~	~	~	~	~	~	<u> </u>	~		~	<u> </u>	~	~	
					`								~			
SW3	~	~	~	~	~	~	~	~	~	~	~	~	~	~	V	~
SIT 3*	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~
SIT 5**	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~
PXAE	~			~	~			~	~	~		~		~	~	
WMT05	~	~	~	~	~	~	~	~	~	~	~	~	~	~	· /	~
WMT06	~	V	~	V	V	V	~	V	V	V	- V	V	V	~	V	~
WMT10	~	~	~	V	~	~	~	V	~	~	~	V	~	~	V	~
VCF45C	~	~	~	~	~	~	~	~								
VCF45H		~		~		~		~								
VCF47C									~	~	~	V	~	~	V	~
VCF47H										V		V		~		~
VCF25C	~	~	~	~	~	V	~	~								
VCF25H		~		V		~		V								
VCF27C									V	V	V	V	~	V	V	~
VCF27H										/		V		/		~
VMF-SIT3***	~	~	V	~	~	~	V	V	~	/	~	V	~	V	V	~
VMF-E0	~	V		V	~	~	~	V		V		/	~	V	/	~
VMF-E1	~	V		V	~	~	~	V		V	~	/	~	V	~	
VMF-SW	~	V	V	V	~	~	~	V	~	V	~	V	~	V	/	~
VMF-SW1	~	V	~	~	~	~	~	V	~	V	~	V	~	V	~	~
VMF-E4	~			V	~	~		/	V	V	~	/	~	/	~	~
VMF-E5B	~	/	V	V	~	~	~	V	/	/	V	V	~	V	V	~
VMF-E5N	~	/	/	V	V	/	/	/	V	V	/	/	V	/	/	~

^{*-} SIT3 = OБЯЗАТЕЛЬНАЯ опция для кондиционера серии VED при его работе с любыми панелями управления кроме системы VMF **- SIT5 = Позволяет создать сеть (максимально из 3 шт.) кондиционеров VED, управляющихся одним централизованным

пультом РХАЕ. ***- VMF-SIT3 = ОБЯЗАТЕЛЬНЫЙ аксессуар для связи с VMF-E0 или VMF-E1

Mod. VED		430	432	440	441	530	532	540	541	630	632	640	641	730	732	740	741
	W (nominal)	-	13875		8990		15020		9510	-	22800		14800		25080		15800
Теплопроизводительность 70°C	W (max.) (E)	-	12090	-	8160	-	13540	-	8850	-	20500	-	13750		22180	-	14500
(только для теплообменника-нагревателя)	W (med.) (E)	-	10725	-	7480	-	12850	-	8520	-	17750	-	12370	_	19720	-	13330
	W (min.) (E)	-	8280	-	6190	-	10720	-	7475	-	14690	-	10770	-	16730	-	11830
	l/h (nominal)	-	1193	-	773	-	1292	-	818	-	1961	-	1273	_	2157	-	1359
Расход воды 70°C	I/h (max.)	-	1040	-	702	-	1164	-	761	-	1763	-	1183	-	1907	-	1247
(только для теплообменника-нагревателя)	I/h (med.)	-	922	-	643	-	1105	-	733	-	1527	-	1064	-	1696	-	1146
	I/h (min.)	-	712	-	532	-	922	-	643	-	1263	-	926	-	1439	-	1017
	kPa (nominal)	-	22	-	32	-	25	-	35	-	33	-	31	-	39	-	34
Падение давления при 70 °C	kPa (max.) (E)	-	17	-	27	-	21	-	31	-	27	_	27	_	31	-	30
(только для теплообменника-нагревателя)	kPa (med.) (E)	-	14	-	23	-	19	-	29	-	21	_	23	_	25	-	26
	kPa (min.) (E)	-	9	-	17	-	14	-	23	-	15	-	18	-	19	-	21
	W (nominal)	10420	-	11950		11340	-	13110	-	18220	-	19600	-	20060	-	21820	-
Теплопроизводительность при 50 °C	W (max.) (E)	9475	-	10740	-	10420	-	11820	-	16070	-	17930	-	17280	-	19150	-
(для двухтрубной системы)	W (med.) (E)	8250	-	9130	-	9775	-	11050	-	13500	-	14940	-	15120	-	16680	-
	W (min.) (E)	6195	-	6810	-	8190	-		-	11100	-	11980	-	12640	-	13840	-
	kPa (nominal)	17	-	24	-	19	-	29	-	57	-	37	-	69	-	43	-
Падение давления при 50 °C	kPa (max.) (E)	13	-	19	-	16	-	23	-	48	-	32	-	57	-	35	-
(для двухтрубной системы)	kPa (med.) (E)	11	-	15	-	15	-	21	-	36	-	24	-	44	-	28	-
	kPa (min.) (E)	7	-	9	-	11	-	16	-	26	-	17	-	33	-	21	-
	W (nominal)	8010	8010	9290	9290		8660		10280	13900	13900	16450	16450	15360	15360	18100	18100
Полная холодопроизводительность	W (max.) (E)	6950	6950	8010	8010		7760	8970	8970	12530	12530	15180	15180	13850	13850	16080	
Полная холодопроизводительность	W (med.) (E)	6150	6150	7060	7060		7395	8545	8545	10700	10700	12760	12760	12200	12200	14230	
	W (min.) (E)	4685	4685	5340		6160	6160	7435	7435	8890	8890			10400		11960	
	W (nominal)	6225	6225	6675	6675	-	6755	7255	7255	11500					12770	12800	
Явная холодопроизводительность	W (max.) (E)	5360	5360	5735		6020	6020	6450	6450		10300					11320	
лынал холодопроизводительность	W (med.) (E)	4715	4715	5040	5040		5715	6130	6130	8750	8750	8910	8910	9990	9990	9970	9970
	W (min.) (E)	3545	3545	3785	3785		4720	5040	5040	7220	7220	7240	7240	8480	8480	8340	8340
	I/h (nominal)	1378	1378	1598	1598		1490	1768	1768	2391	2391	2829	2829	2642	2642	3113	3113
Расход воды (охлаждение)	<u>l/h (max.)</u>	1195	1195	1378	1378		1335	1543	1543	2155	2155	2611	2611	2382	2383	2766	2766
	<u>l/h (med.)</u>	1058	1058	1214	1214		1272	1470	1470	1840	1840	2195	2195	2098	2098	2448	2448
	l/h (min.)	806	806	918	918	1060	1060	1279	1279	1529	1529	1794	1794	1789	1789	2057	2057
-	kPa (nominal)	22	22	30	30	26	26	37	37	58	58	47	47	70	70	56	56
Падение давления	kPa (max.) (E)	17	17	22	22	21	21	28	28	48	48	41	41	58	58	45	45
(охлаждение)	kPa (med.) (E)	13	13	17	17	19	19	25	25	36	36	30	30	46	46	37	37
	kPa (min.) (E)	8	8	10	10	13	13	19	19	26	26	21	21	35	35	27	27
	m³/h (nominal)		1520	1520	1520		1700	1700	1700	2450	2450	2450	2450	2800	2800	2800	2800
Расход воздуха	m³/h (max.) (E)	1350	1250	1340	1250		1460	1500	1460	2210	2110	2200	2110	2410	2350	2380	2350
·	m³/h (med.) (E)		1060	1100	1060		1360	1380	1360	1800	1730	1770	1730	2040	2000	2020	2000
	m³/h (min.) (E)	790	750 40	780 50	750 40	1120 40	1060	1100 35	1060	1380	1340 53	1370	1340 53	1640	1600 37	1620	1600 37
По голион отполницения голион	Pa (nominal)	55 72	70	70	70	58	30 56	56	30 56	68 75	75	63 75	75	47 69	69	42 69	69
Полезное статическое давление	Pa (max.) (E) Pa (med.) (E)	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
(с установленным воздушным фильтром)	Pa (min.) (E)	24	25	24	25	32	32	32	32	30	30	30	30	32	32	32	32
	(nominal)	V5	V5	V5	V5	V5	V5	V5	V5	V5	V5	V5	V5	V5	V5	V5	V5
		V5 V5	V5 V5	V5 V5	V5 V5	V5 V5	V5 V5	V5 V5	V5 V5	V5 V5	V5 V5	V5 V5	V5 V5	V5 V5	V5 V5	V5 V5	V5 V5
Соответствие скоростей мотора	(max.) (E) (med.) (E)	V3	V3	V3	V3	V3 V4	V4	V4	V3 V4	V3	V3	V3	V3	V3	V3	V3	V3
	(min.) (E)	<u>v 3</u>	V3 V1	V1	V1	V1	V2	V2	V2	V2	V1	V3 V1	V1	V1	V1	V1	V1
	W (nominal)	238	242	240	242	283	281	282	281	376	376	376	376	411	411	411	411
	W (max.) (E)	228	215	222	215	270	265	267	265	339	339	339	339	371	371	371	371
Потребляемая мощность	W (med.) (E)	182	175	178	175	232	229	230	229	268	268	268	268	285	285	285	285
	W (min.) (E)	137	130	135	130	175	269	172	169	224	224	224	224	234	234	234	234
Макс. Потребляемая мощность	W	290	290	290	290	300	300	300	300	436	436	436	436	440	440	440	440
Макс. Потребляемый ток	A	1,4	1,4	1,4	1,4	1,35	1,35	1,35	1,35	2,07	2,07	2,07	2,07	2,00	2,00	2,00	2,00
Класс зашиты	/ \	IP20	IP20	IP20	IP20	IP20	IP20	IP20	IP20	IP20	IP20	IP20	IP20	IP20	IP20	IP20	IP20
Количество вентиляторов	n°	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3
Присоед, размер теплообменю (основного)	Gas (Отверстие)		3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"
Присоед, размер теглообменю (основного)			1/2"	- -	1/2"	- -	1/2"	-	1/2"	-	1/2"	- -	1/2"	- -	1/2"	-	1/2"
Macca HETTO	kg	41	45,5	43	45,5		45,5	43	45,5	57	63	60	63	57	63	60	63
Масса БРУТТО	kg	44	48,5	46	48,5		48,5	46	48,5	72	78	75	78	72	78	75	78
macca Di / IIO	- מיי		10,5	70	10,5		10,5	70	10,5	, 4	, 0	, ,	, 0	, 4	, 0	, ,	, 0

Указанные технические характеристики относятся к следующим условиям: (E): данные, подтвержденные EUROVENT (Программа FCP)

Номинальная скорость является скоростью при которой достигается наибольший возможный расход воздуха через

- Oхлаждение (Eurovent):
- температура воздуха на входе 27 °C (по сухому термометру)
- температура воздуха на входе 19 °C (по

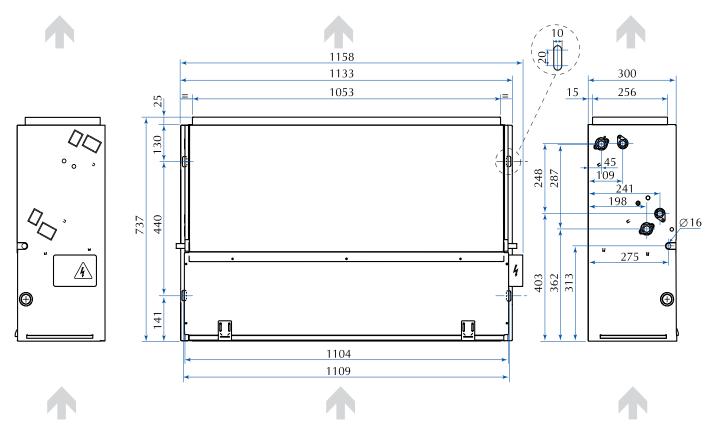
- мокрому термометру)

 температура воды на входе 7 °C

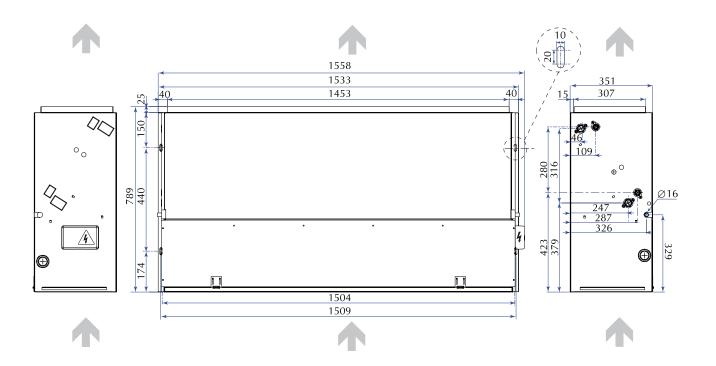
 температура воды на входе 12 °C

 расход воды в зависимости от Dtw постоянный

- теплообменник. Электропитание: 230B ~ 50Гц
 - Воздушный фильтр класса G3 установлен
- Нагрев 50 °C (Eurovent):
- температура воздуха на входе 20 °C (по температура воздуха на входе 20 °C (по сухому термометру)
- температура воздуха на входе 15 °C (по температура воздуха на входе 15 °C (по мокрому термометру)
- температура воды на входе 50 °C расход воды такой же, как при тестировании холодопроизводительности
- Haгрев 70 °C (Eurovent):
- сухому термометру)


- мокрому термометру)

 температура воды на входе 70 °C


 температура воды на выходе 60 °C

 расход воды в зависимости от Dtw постоянный

VED: 430 - 432 - 440 - 441 - 530 - 532 - 540 - 541

VED: 630 - 632 - 640 - 641 - 730 - 732 - 740 - 741

Панели управления вентиляторными доводчиками

- FMT10: Электронный термостат для управления работой вентиляторных доводчиков в четырех и двухтрубных системах, а также в двухтрубных системах с электронагревателем. Может применяться в сочетании с двумя электромеханическими вентилями, перекрывающими поступление воды в те-плообменники. Упрощенное управление с использованием всего двух регуляторов: температуры и скорости вращения вентилятора (три положения). В комплект входит датчик температуры (с держателем), размещаемый внутри вентиляторного доводчика.
- Устанавливается в утопленном положении. **FMT21:** Электронный термостат с LCDдисплеем для управления работой вентиляторных доводчиков в четырех и двухтрубных системах, а также в двухтрубных системах с электронагревателем. Может применяться в сочетании с двумя вентилями (On-Off), перекрывающими поступление воды в теплообменники. Датчик температуры воздуха нахо-дится внутри панели. Могут дополнительно использоваться выносные датчики температуры воды и температуры воздуха в помещении (доп. оборудование SWA). Устанавливается на стену в утопленном положении.
- KTLM: Комплект оборудования, включающий термостат, инфракрасный пульт дистанционного управления, приемник инфракрасных сигналов, электронную плату с датчиком температуры, соединительный кабель, установочные скобы и все необходимые крепежные приспособлениями. Применяется в двухтрубных системах с запорными вентилями в контуре циркуляции воды или без них, а также в четырехтрубных системах с вентилями. Рассчитан на использование в сочетании с вентиляторными доводчиками серии FCX,
- оборудованными корпусом.
 KTLP: Комплект оборудования, инфракрасный пульт дистанционного управления, при-емник инфракрасных сигналов, электронную плату с датчиком температуры, соединительный кабель, установочные скобы и все необходимые крепежные приспособлениями. Применяется в двухтрубных системах с запорными вентилями в контуре циркуляции воды или без них, а также в четырехтрубных системах с вентилями. Рассчитан на использование в сочетании с вентиляторными доводчиками серии FCX без корпуса.
- РСТ2: Панель управления с электромехани-

- ческим термостатом, применяемая в двухтрубных системах с термостатированной вентиляцией. Не используется в сочетании вентиляторными доводчиками серии FCL. Устанавливается на стенепомещения.
- **РХВІ:** Упрощенная панель управления с электронным термостатом и датчиком температуры воздуха в помещении. Монтипуется на корпусе вентиляторного доводчика.
- РХАЕ: Электронный термостат для управработой вентиляторных доводчиков в двух и четрырехтрубных системах. Упрощенное управление с использованием всего двух регуляторов: температуры и скорости вращения вентилятора (три скорости с регулировкой вручную или автоматически). Может управлять работой двух электромеханических вентилей в контуре циркуляции воды. Обеспечивает непрерывное управление процессом вентиляции.
- Устанавливается на стене помещения. **PXAI:** Электронный термостат для управления работой вентиляторных доводчиков в двух и четрырехтрубных системах. Упрощенное управление с использованием всего двух регуляторов: температуры и скорости вращения вентилятора (три скорости с регулировкой вручную или автоматически). Может управлять работой двух электромеханических вентилей в контуре циркуляции воды. В комплект входит датчик температуры воды. Обеспечивает непрерывное управление процессом вентиляции или включение/выключение по команде термостата. Устанавливается на корпусе вентиля-торных доводчиков серий FCX AS или U.
- РХАЯ: Электронный термостат для управления работой вентиляторных доводчиков в двух и четрырехтрубных системах, двухтрубных системах с электронагревателем и четырехтрубных системах без нагревателя. Упрощенное управление с использованием всего двух регуляторов: температуры и скорости вращения вентилятора (три скорости с регулировкой вручную или автоматически). Работа электронагревателя управляется теми же органами управления, что и скорость вращения веннтилятора. Может управлять работой одного электронагревателя и одного электромеханического вентиля в контуре циркуляции воды или двух вентилей. В омплект входит датчик температуры воды. Обеспечивает непрерывное управление про-

- цессом вентиляции. Устанавливается на стене помещения или на корпусе вентилятор-ных доводчиков серий FCX AS или U.
- **TPF:** Электронный термостат с LCD-дисплеем для управления работой вентиляторных доводчиков в четырех и двухтрубных системах. Может применяться в сочетании с двумя вентилями (On-Off), перекрывающими поступление воды в теплообменники. Датчик температуры воздуха находится внутри панели. Можно использовать дополнительно датчик температуры воды (поставляется как дополнительный аксессуар). Устанавливается на стену в утопленном положении. РТІ: Панель управления с электронным те-
- мостатом и датчиком температуры воздуха в помещении. Устанавливается на корпусе вентиляторных доводчиков серий FCX AS и U.
- РХ: Панель управления с тумблером включения/выключения. Устанавливается на чения/выключения. стене помещения.
- РХ2: Панель управления с тумблером включения/выключения. Устанавливается на стене помещения или на корпусе вентиляторных доводчиков серий FCX ÁS и U.
- **ТF1:** Термостат с датчиком температуры воздуха впомещении и тумблером включения/выключения. Устанавливается на стене помещения. WMT05: Электро
- Электронный термостат управления вентиляторными доводчиками в двухтрубных системах. В цепи питания имеется плавкий предохранитель.
- Устанавливается на стене помещения. WMT10: Электронный термостат для управ-ления вентиляторными доводчиками в двух и четырехтрубных трубных системах, а также в двухтрубных системах с электронагревателем. Может применяться в сочетании двумя электромеханическими вентилями, перекрывающими поступление воды в теплообменники. В цепи питания имеется плавкий предохранитель. Обеспечивает непрерывное управление процессом вентиляции. Устанавливается настене помещения.
- **WMT06:** Электронный термостат для управления вентиляторными доводчиками в двухтрубных или четырёхтрубных системах. В цепи питания панели устанавливается плав-кий предохранитель. Настенная установка.
- РХ2С6: Панель управления РХ2С6 поставляется в группе из 6 панелей, индивидуально запечатанных. Настенная установка.

	LVAE	Lyg	FAAK	Lypi	L	FWILLU	FINITZO	111	WM105	W M I U6	W M1110	KILM	KILP	1	2		LAZCO	70.7
Электронный терм	>	>	>	>	>	`	>	>			`	`	>					
Электромеханический термостат									>	>				>				7
															>	,	>	
	>	>	>		>	>	>	>				`	>					
				>			>	>	>	>	>			>				7
Стандартное оборудование																		
Встр. датчик темп. воздуха	>	>	>	>			>	>	,	`	`	*	Š	>				>
Внеш. датчик темп. воздуха		√ 2,3m	√ 2,3m	√ 2,3m	√ 2,3m	√ 6m						*	Š					
Датчик температуры воды		√ 2,5m	√ 2,5m		√ 2,5m			√ 6m										
На стене помещения	>		>						>	>	>	>	>	,	>	,	>	,
		,	>	,	>											,		
Утопленная (503)						7	>	,										
Инфракрасные сигналы												`	>					
	>	7		,	>	,	>	7	>	>	>	>	>	>	>	>	7	7
	>	>		>	>	>	7	>		>	>	>	>					
							√ 6m											
							√ 6m											
	>			7										>	>	>	7	
	>			,										,	>	,	>	
	>			,														
Двухтрубная система с эл. нагр.																		
			>			>	>				>							,
			7			>	>				>							,
			>															
			>															
Четырехтрубная система			>															
	>	,				>	>	,		>	>	>	>					
	>																	
	,																	

управления, убедитесь, что она совместима с Вашим вентиляторным доводчиком, включая дополнительное оборудование. Некоторые типы панелей управления осуществляют функции, не предусмотренные в вентиляторных доводчиках стандартной Внимание! Перед тем, как заказать панель

конфигурации. Внимательно ознакомьтесь с

описанием Вашего доводчика. Обозначения * = датчик температуры воздуха, показания которого учитываются пультом дистанционного управления ** = датчик температуры воды

VC = вентиль контура циркуляции горячей воды VF = вентиль контура циркуляции холодной воды VCF = вентили контуров циркуляции горячей и холодной воды RX = электронагреватель (503) = модуль для утопленной установки

VMF

Система управления VMF. Ряд компонентов для управления кондиционированием, обогревом и подготовкой горячей воды.

VMF

* Победитель Международной дизайнерской Премии «Good Design 2010» в номинации «Электроника»

Особенности

- VMF: Система управления с переменным расходом.
- расходом.
 Система управления и контроля для гидравлических систем кондиционирования, обогрева и производства горячей воды (ГВС). Различными компонентами системы, управляя производительностью даже без вмешательства пользователя, поддерживая комфортные условия максимально энергосберегающим методом. Если Вы добавите преимущества, происходящие из такой инновационной системы контроля к гибкости гидравлической системы, вы получите более рациональную и энергоэффективную альтернативу системе с переменным расходом хладагента (VRF).
- Система VMF чрезвычайно гибкая, она позволяет различные уровни контроля и управления, а также позволяет расширять систему в различных направлениях:
- 1) Управление единичным фанкойлом.
- 2) Управление «микро-зоной» (один МАСТЕРфанкойл и до 5 ПОДЧИНЁННЫХ фанкойлов)
- 3) Управление системой с множеством независимых зон (один MACTEP- фанкойл и

- до 5 ПОДЧИНЁННЫХ фанкойлов для каждой зоны).
- Управление системой фанкойлов, плюс управление тепловым насосом (если он совместим с системой управления VMF).
- 5) Управление системой фанкойлов, тепловым насосом и управление системой производства горячей воды (ГВС).
- 6) Управление системой фанкойлов, тепловым насосом, системой ГВС, а также дополнительными циркуляционными насосами (максимум до 12, используя 3 вспомогательных модуля управления VMF-CRP).
- 7) Управление системой фанкойлов, тепловым насосом, системой ГВС, дополнительными насосами и управление системами рекуперации, максимум тремя, (с возможностью обрабатывать показания до 3 датчиков VOC) или котлом.
- Система VMF может управлять, с помощью центральной панели управления VMF-E5, максимально 64 зонами, каждая из которых состоит из одного MACTEP-фанкойла и до 5 ПОДЧИНЁННЫХ фанкойлов, подключенный к MACTEP-фанкойлу. В общей сложность система может

- управлять до 384 фанкойла.
- Помимо центральной панели управления VMF-E5, MACTEP- фанкойлы могут быть обеспечены зональной панелью управления. Эта панель управления может быть смонтирована на фанкойл (VMF-E2/E2H), либо может быть смонтирована на стену (VMF-E4).
- Различные функции могут контролироваться через центральную панель управления WMF-E5, в том числе:
- Распознавание каждой зоны путем присвоения имени для каждой из них;
- Проверка и установка статуса работы (Вкл-Выкл), а также установка температуры воздуха для каждой зоны;
- Установка и управление уставкой теплового насоса;
- Планирование временных интервалов
- Простая установка системы для фанкойлов с помощью функции САМО-КОНТРОЛЯ в МАСТЕР- фанкойлах.

- VMF-E0: тТ фанкойле, стандартно укомплектован датчиками температуры воздуха и воды, может управлять следующими системами:
- 2-трубными, 4-трубными, 2-трубными + фильтр Plasmacluster, 2-трубными + УФ-лампа, а также 2-трубными системами с дополнительным электрическим нагревателем. Оборудован внешним низковольтным контактом, который можно использовать для удаленного включениявыключения. С данным термостатом можно создавать зону с одним фанкойлом с помощью 2-жильной последовательной связи (1 мастер + 5 подчиненных максимум). Термостат защищен с помощью плавкого предохранителя.
- VMF-E1: Термостат, схожий по свойствам с VMF-E0, но с дополнительными опциями:
- Контакт «экономии»/датчик присутствия;
- Дополнительный датчик температуры воды для общего контроля в 4-трубных системах (с аксессуаром VMF-SW1);
- Интерфейс RS485, протокол ModBus-RTU для централизованного контроля;
- Возможность установки расширительных карт в будущем для развития системы.
- Поэтому термостат VMF-E1 должен использоваться в качестве Мастера, при наличии множества зон, или при связи с чиллером/тепловым насосом.
- VMF-E18: термостат, схожий по свойствам с VMF-E1, но для фанкойлов с инверторными двигателями.
- VMF-E2: это термостат с пользовательским интерфейсом для установки на фанкойл, выполняет те функции, что и VMF-E0, Е1 или Е18 и является принадлежностью для моделей FCX UL-S-AS, FCX-U (типоразмеров 62-82-102). Оборудован двумя переключателямиселекторами, один для температуры, второй для скорости вентилятора.
- VMF-E2H: это термостат, как и VMF-E2, предназначенный для модели FCX-HL.
- VMF-E4: Это зональная панель управления настенной установки, светлой окра-

- ски, для работы с термостатами VMF-E0, E1 и E18, принадлежностями для UL, HL а также для фанкойлов FCX без встроенного контроллера. Эта панель отличается инновационным дизайном, очень тонкая и недорогая. Позволяет управлять всеми функциями с помощью ёмкостных сенсорных клавиш с ЖК-дисплеем. Температура воздуха может контролироваться с помощью встроенного датчика температуры воздуха (стандартно), или с помощью датчика температуры воздуха одного из подключенных фанкойлов, или с помощью средней арифметической температуры от нескольких датчиков. Панель также позволяет управлять системой очистки (Plasmacluster/УФ-лампа) и воздушным электронагревателем.
- VMF-E5B: Центральная настенная (врезная) панель управления, светлого цвета, с графическим ЖК-дисплеем с задней подсветкой, ёмкостной сенсорной клавиатурой. Позволяет централизовано управлять/контролировать всю гидравлическую систему, которая может состоять из: фанкойлов – до 64 зон из групп мастер + подчинённый (до 5 подчиненных в группе); чиллера/теплового насоса – работающих под управлением контроллеров семейств Modu Control, GR3 или PCO2/ РСОЗ (с необходимыми принадлежностями для обмена данными по интерфейсу RS485 - соответственно MODU-485A, AER485 или AER485P2/AER485P1); насосов: до 12 конфигурируемых зональных насосов: котла – согласование работы котла для производства горячей воды; системы рекуперации - может согласовывать работу до трех программируемых систем рекуперации, основывается на временных интервалах и/или измерении качества воздуха, полученного с помощью дополнительно поставляемого в качестве принадлежности VMF-VOC; модуль подготовки ГВС - полное управление производством горячей воды посредством температурного датчика.

- Система «анти-легионелла».
- VMF-E5N: Центральная панель управления (такая же как VMF-E5B) только с панелью выполненной в чёрном пластике.
- VMF-VOC: принадлежность для измерения качества воздуха (см. соответствующий пункт в разделе с описанием VMF-E5B).
- VMF-CRP: принадлежность для управления бойлером, насосами и рекуператорами.
- VMF-CW: датчик температуры воды, может использоваться на месте стандартного термостата, поставляемого с VMF-E0/E1/E18, для установки выше клапана (по ходу воды).
- VMF-CW1: дополнительный датчик температуры может использоваться для 4-трубных систем с термостатами VMF-E1/E18 для максимального контроля в режиме охлаждения.
- VMF-ACS3KM: электронная панель для полного контроля/управления для баканакопителя ГВС (управление 3-ходовым клапаном, управление встроенным однофазным 3кВт нагревателем, «анти-легионелла» и датчик температуры).
- VMF-AC\$3KTN: электронная панель для полного контроля/управления для баканакопителя ГВС (управление 3-ходовым клапаном, управление встроенным трёхфазным 3кВт нагревателем, «анти-легионелла» и датчик температуры).
- VMF-ACS6KTN: электронная панель для полного контроля/управления для баканакопителя ГВС (управление 3-ходовым клапаном, управление встроенным однофазным 6кВт нагревателем, «анти-легионелла» и датчик температуры).
- VMF-ACS8KTN: электронная панель для полного контроля/управления для баканакопителя ГВС (управление 3-ходовым клапаном, управление встроенным трёхфазным 6кВт нагревателем, «анти-легионелла» и датчик температуры).

B

(mm)

110

80

544

81

(mm)

138

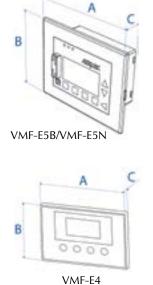
125

354

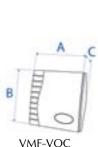
79

C

(mm)


45

11


135

26

Размеры (мм)

VMF-E5B/ VMF-E5N

VMF-E4

VMF-ACS

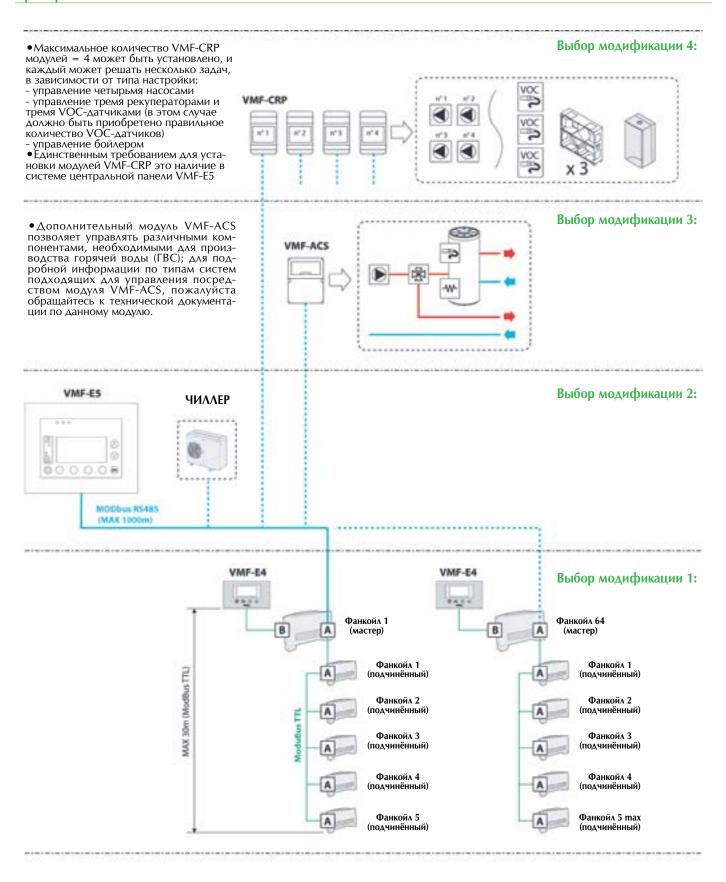
VMF-VOC

Выбор 1 • Совместимость термостатов для последовательных соединений и управляющим интерфейсом для МАСТЕР- фанкойлов

Модели	Модификации	Примечания	VMF-E0	VMF-E1	VMF-E18	VMF-E2	VMF-E2H	VMF-E4
FCX	AS - UA - B	· ·	/	/	-	/	-	V
rcx	U	(9)	/	/	-	/	-	V
	AN	(1)	-	-	-	-	-	-
	P - PPC - PO - PV		✓	✓	-	-	-	✓
	AS	,	-	-	/	V	-	V
FCXI	U	(9)	-	-	V	V	-	V
	P	,	-	-	V	-	-	V
HL	S - SM	,	V	V	-	-	V	~
пь	N	(1)	-	-	-	-	-	-
UL	S		V	V	-	/	-	V
UL	P	'	V	V	-	V	-	~
FIIV	UV	(9)	V	V	-	V	-	~
FHX	UVP - UVPO		V	V	-	-	-	~
VEC			V	V	-	V	-	~

Выбор 2 • Совместимость центральной панели управления VMF-E5

Модели	Модификации	Примечания	VMF-E5	
	AS - U	(4)	✓	
FCX	AN	(1)	-	
	P - PPC - PO	(4)	✓	
FCXI	AS - U - P	(4)	✓	
HL	S - SM	(4)	✓	
пь	N	(1)	-	
	S	(4)	✓	
UL	N	(1)	-	
	P	(4)	✓	
FHX	UV - UVP - UVPO	(4)	<u> </u>	
VEC		(4)	<u> </u>	


Выбор 3 • Совместимость тепловых насосов с панелью для управления производством ГВС

Модели	Модификации	Примечания	VMF-ACS3KM	VMF-ACS3KT	VMF-ACS6KT	VMF-ACS8KT
ANL	Н	(5) (6)	✓	✓	✓	✓
ANLI	Bce	(6)	V	V	V	V
ANK	Bce	(6)	V	V	V	V
ANR	Н	(5) (6)	V	V	V	V
ANF	Н	(5) (6)	V	V	V	V
SRA	Bce	(6)	V	V	V	V
SRP-V1	Bce	(6)	V	V	V	V
NRL	Н	(5) (6)	V	V	V	V
NRC	Н	(5) (6)	V	V	V	V
RVB H	Bce	(6)	<u> </u>	<u> </u>	<u> </u>	<u> </u>
WSH	Bce	(6)	<u> </u>	V	V	V

Выбор 4 • Совместимость модулей и дополнительных датчиков

Модели	Модификации	Примечания	VMF-CRP	VMF-VOC
VMF-E5	Bce	(7)	✓	✓ (8)

- (1) Данная модификация имеет термостат VMF-E0 и панель управления VMF-E2/E2H уже установленными; это позволяет использовать указанные модели для работы только в качестве MACTEP- фанкойлов в микро-зональных системах (Системах, включающих в себя только одну зону, без центральной панели WMF-E5);
- (2) Все модели фанкойлов для подвесного и/или канального монтажа, не могут использовать командную панель VMF-E2 или VMF-E2H;
- (3) Подвесные модификации с опциями MA или MU могут приравниваться к модификациям FCX AS и FCX U
- (4) Чтобы быть совместимым с WMF-E5, фанкойл должен быть установлен в зоне как MACTEP, поэтому он должен быть укомплектован соответствующим термостатом WMF-E1, последовательной связью и объединен с зональной панелью управления (VMF-E2/E2H или WMF-E4);
- (5) Тепловые насосы со встроенным баком-накопителем не могут быть применены для производства ГВС;
- (6) Для того чтобы узнать максимальную возможную температуру производства горячей воды (для системы или для ГВС), пожалуйста обратитесь к соответствующей технической инструкции;
- (7) Все типы систем с WMF-E5 являются совместимыми с дополнительными модулями WMF-CRP (максимум 4); каждый модуль может работать в качестве управляющего насосом (до 4 для каждого модуля) или бойлером и рекуператором (с «Вкл/Выкл» управлением бойлером и управлением до 3 рекуператоров с тремя модулями WMF-VOC);
- (8) Совместимость модулей WMF-VOC зависит от наличия модулей WMF-CRP с функцией контроля рекуператора

Α

Термостат для последовательного соединения VMF-E0/E1/E18

В

Панель управления для MACTEP- фанкойлов VMF-E2/F2H/F4

TUN

Неавтономный канальный кондиционер

- УНИВЕРСАЛЬНОЙ УСТАНОВКИ
- МОДИФИКАЦИЯ С 4-6-РЯДНЫМ ТЕПЛООБМЕННИКОМ
- МОДИФИКАЦИЯ «ВЫТЯЖНОЙ БЛОК»

Особенности

Неавтономный канальный кондиционер серии TUN предназначается для использования в гражданских, коммерческих а также в гостиничных системах с малыми или средними площадями помещений. Конструкция доводчика TUN обладает высокой компактностью (необходимое требование при его монтаже за подвесным потолком) и низким уровнем шума. Широкий спектр аксессуаров позволяет удовлетворять различным требованиям заказчика.

• Рама изготовлена из стального гальванизированного листа толщиной 1,5 мм., изолирована с внутренней стороны (класс изоляции V0). Кондиционер может работать в любых приточных и/или вытяжных системах. Блок может быть установлен горизонтально или вертикально с помощью соответствующего монтажного комплекта, существенно облегчающего установку.

- Воздушный фильтр относиться к классу G2 в соответствии с нормой EN779 (толщиной 6 мм), расположен на всасывающей стороне блока.
- Центробежный вентилятор двухстороннего всасывания с вперед загнутыми лопатками, расположен на валу электродвигателя. Однофазный многоскоростной электродвигатель 230В ~50Гц имеет 3 скорости вращения, которые выбираются с помощью пульта управления.
- Внутренний поддон для конденсата выполнен из стального гальванизированного листа толщиной 1 мм.
- 4-6 рядные теплообменники, работающие с холодной или горячей водой, выполнены из медных трубок с алюминиевым профилированным оребрением, напрессованным на трубки. Теплообменники укомплектованы соединительными патрубками, а также клапанами для удаления воздуха из системы. Сторона подключения теплообменников может быть изменена на месте монтажа.
- Также доступен 2 рядный нагреватель, выполнен из медных трубок с алюминиевым оребрением, напрессованным на трубки.

Выбор модификации

Комбинируя различные опции, можно подобрать такую модель серии TUN, которая наиболее полно отвечает требованиям заказчика.

Кодовое обозначение опции:

Код:

TUN

Типоразмер:

10, 15, 20, 25, 40

Модификация:

4 - 4 row coil

6 - 6 row coil **Конфигурация:**

P - Powered

X - Extractor

Пример кодового обозначения: TUN104P Это кондиционер серии TUN, 10 типоразмера с четырехрядным теплообменником.

- М25 камера смешивания с двумя клапанами Секция выполнена из стального гальванизированного листа с двумя клапанами, регулирующими расход воздуха с помощью жалюзи, которые выполнены также из гальванизированного стального листа. Шаг жалюзи 50 мм; шток моторизованного привода (8 мм) сделан из гальвани-
- зированной стали.

 МЗS камера смешивания с тремя клапанами Секция выполнена из стального гальванизированного листа с тремя клапанами, регулирующими расход воздуха с помощью жалюзи, которые выполнены также из гальванизированного стального листа. Шаг жалюзи 50 мм; шток моторизованного привода (8 мм) сделан из гальванизированной стали. Данный аксессуар должен использоваться в паре с опцией VRF.

• FTF мягкий карманный фильтр

Секция выполнена из гальванизированного стального листа, с фильтром класса F6. Для поставки фильтров иной степени фильтрации пожалуйста обратитесь в Отдел Продаж AERMEC. Должен поставляться с подключенным кондиционером.

• В2R 2 рядный водяной теплообменник Для применения в четырёхтрубных системах, теплообменник установлен внутри кондиционера, по ходу движения воздуха – за основным теплообменником. Присоединительные патрубки и клапаны для удаления воздуха из системы также посталяются.

РВЕ секция электрического «второго» нагрева

Электрический нагреватель состоит из армированного сопротивления соединенного со сдвоенным термостатом.

• SSL секция шумоглушителя

Секция выполнена из гальванизированного стального листа с шумоглушащими секциями из минеральной ваты, покрытой пластиковой плёнкой для предотврашения отслаивания.

• S2Z 2-зонный клапан (70-30%)

Клапан выполнен из гальванизированного стального листа с противоположными жалюзи для смешивания свежего и рециркуляционного воздуха. Шаг жалюзи 50 мм; шток моторизованного привода (8 мм) сделан из гальванизированной стали.

VRF воздухозаборная камера с фильтром класса G4

Камера из стального гальванизированного листа оборудована электрическим переключающим механизмом и фильтром класса G4 (согласно EN779).

РММ воздухораспределительный стальной пленум с круглыми фланцами

Выполнен из стального гальванизированного листа толщиной 1,5 мм. Пленум имеет круглые присоединительные места под различные диаметры (200мм, 180мм и 150 мм) для присоединения круглых воздуховодов.

- РМС воздухораспределительный пленум 90° Выполнен из гальванизированного стального листа толщиной 1,5 мм. Позволяет разворачивать поток на 90°.
- SAS воздухозаборная камера

Регулирующая камера с жалюзи из гальванизированной стали. Шаг жалюзи 50мм; шток моторизованного привода (8 мм) сделан из гальванизированной стали.

GMD воздухораспределительная решетка с регулируемыми жалюзи

Решетка с двухрядными регулируемыми 4) жалюзи для распределения воздуха в помещении. Она может быть установлена непосредственно на кондиционер после демонтажа фланца, либо на стену. 6)

- GAP воздухозаборная решетка с жалюзи Жалюзи установлены под углом 45°, решетка может быть установлена непосредственно на кондиционер после демонтажа фланца, либо на стену.
- FPI воздушный фильтр G4 для воздухозаборной решетки
- РХ упрощенная панель управления только с выключателем

WMT05 электронно-механический термостат

Для блока, установленного в двухтрубной системе. Панель настенной установки, электрически защищена с помощью внутреннего плавкого предохранителя. Она имеет следующие функции: включение/выключение; переключатель для выбора режима работы – охлаждение/ нагрев (ручное переключение сезона работы); переключатель для выбора скорости вращения вентилятора (высокая, средняя, минимальная); датчик температуры (диапазон от +5 до +30 °C).

• WMT10 панель управления

Панель настенной установки. Регулирует работу кондиционера согласно выбранному режиму. Панель может использоваться для кондиционеров работающих в двух- или четырёх- трубных системах или в двухтрубных системах с электрическим вторым нагревом, с возможностью подключения двух клапанов типа «ON/OFF» на линии питающей воды. Панель управления защищена электрически с помощью внутреннего плавкого предохранителя. Панель имеет следующие функции:

- 1) Переключатель для выбора режима работы охлаждение/нагрев;
- 2) Ручное переключение сезона работы;
- Ручной выбор скорости вращения вентилятора;
- 4) Выбор желаемой температуры в помещении (от +10 °C до +30 °C);
- Управление кондиционером в двухтрубной системе
- 6) Управление кондиционером в четырёхтрубной системе
- 7) Управление кондиционером в двухтрубной системе с электрическим нагревателем
- 8) Термостатическая вентиляция
- 9) Постоянная вентиляция
- Постоянная вентиляция в режиме охлаждения и термостатическая в режиме нагрева.

		Дополні	ительное обору	удование		
	TUN 10	TUN 15	TUN 20	TUN 25	TUN 40	TUN 40P
M2S	M2S1	M2S2	M2S3	M2S4	M2S4	M2S5
M3S	M3S1	M3S2	M3S3	M3S4	M3S4	M3S5
FTF	FTF1	FTF2	FTF3	FTF4	FTF4	FTF5
B2R	B2R11	B2R21	B2R31	B2R41	B2R41	B2R51
PBE	PBE1	PBE3	PBE4	PBE5	PBE6	PBE7
SSL	SSL1	SSL2	SSL3	SSL4	SSL4	SSL5
S2Z	S2Z1	S2Z2	S2Z3	S2Z4	S2Z4	S2Z5
VRF	VRF1	VRF3	VRF4	VRF5	VRF6	VRF7
PMM	PMM1	PMM2	PMM3	PMM4	PMM4	PMM5
PMC	PMC1	PMC2	PMC3	PMC4	PMC4	PMC5
SAS	SAS1	SAS2	SAS3	SAS4	SAS4	SAS5
GMD	GMD1	GMD2	GMD3	GMD4	GMD4	GMD5
GAP	GAP1	GAP2	GAP3	GAP4	GAP4	GAP5
FPI	FPI1	FPI2	FPI3	FPI4	FPI4	FPI5
PX	•	•	•	•	•(2)	•(2)
WMT 05	•	•(1)	•(1)	•(1)	• ⁽²⁾	•(2)
WMT 10	•	•(1)	•(1)	•(1)	•(2)	•(2)

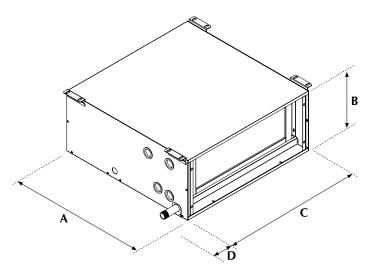
⁽¹⁾ предназначено использовать совместно с SIT3, в котором необходимо заменить предохранитель с номиналом 2A, на предохранитель с номиналом 4A.

⁽²⁾ установить повтор, один на скорость

Технические характеристики

									
TUN			10	15	20	25	40	10P	40P
						,		,	,
Холодопроизводительность с:									
4-рядным теплообменником(1)	Полная	kW	4,7	8,7	12,4	17,3	27,2	5,7	27,2
	Явная	kW	3,5	6,2	8,3	11,2	18,0	4,2	21,3
6-рядным теплообменником(1)	Полная	kW	5,4	11,7	15,5	20,6	33,5	6,7	39,6
_	Явная	kW	3,9	7,5	9,8	12,8	20,9	4,7	25,0
Теплопроизводительность с:									
4-рядным теплообменником(2)	Полная	kW	14,2	23,9	30,8	40,6	65,8	16,6	78,3
6-рядным теплообменником(2)	Полная	kW	15,7	26,6	34,2	44,3	72,6	18,5	87,5
4-рядным теплообменником(3)	Полная	kW	5,5	9,3	12,1	16,0	25,9	6,4	30,8
6-рядным теплообменником(3)	Полная	kW	6,1	10,5	13,6	17,6	28,9	7,2	34,8
Дополнит. 2-рядный нагреватель		<u>kW</u>	8.4	9.5	14.2	17.9	24.3	38.9	44.9
Электрический нагреватель:									
Мощность эл. нагревателя	,	kW	4	8	10	12	20	6	20
Кол-во. ступеней эл. нагревателя		n°	2	2	2	2	2	2	2
Электропитание					400V/3/50)Hz			
Вентиляторы:									
Расход воздуха (4)		m3/h	900	1500	2000	2500	4000	1100	4000
Статическое давление		Pa	110	150	170	150	120	300	220
Потребляемый ток		W	357	713	886	874	1171	713	2852
Потребляемая мощность		Α	1,6	3,1	3,9	3,8	7,7	3,1	12,4
Полюсы		n°	2	2	4	4	4	2	4
Электропитание					230V/1/50)Hz			
Фильтры:									
Эф. плоских фильтров (5) стандарт./доп.			G2/G4	G2/G4	G2/G4	G2/G4	G2/G4	G2/G4	G2/G4
Эффективность карманных фильтров (6)		F6	F6	F6	F6	F6	F6	F6
Шумовые характеристики:									
Звуковая мощность		dB(A)	67	67	72	74	76	67	76
Гидравлические характеристики	:								
Присоед. размеры основного теплообменника		Ø	1"	1"	1″	1"	1″	1"	1"
Присоед. размеры дополнит. теплообменника		Ø	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"

(1) Температура входящего воздуха 27 °C по сухому/19 °C по мокрому термометру
Температура воды на входе
Температура воды на выходе 12 °C


(2) Температура входящего воздуха 10 °C Температура воды на входе 70 °C Температура воды на выходе 60 °C

(3) Температура входящего воздуха 20 °C Температура воды на входе 45 °C Температура воды на выходе 50 °C

(4) При номинальном расходе воздуха с 4-трубным теплообменником

(5) В соответствии с нормативом EN 779

(6) В соответствии с нормативом UNI EN ISO 9614-2

Кондиционер TUN горизонтальной установки

Модель		10	10P	15	20	25	40	40P
Размеры при горизонтальной устан	овке и	присоеди	нения «вытях	кной» конфиг	урации			
Высота (В)	mm	300	300	300	390	390	390	390
Ширина (C)	mm	700	700	1050	1050	1475	1475	2100
Длина (С)	mm	700	700	700	850	850	850	1000
Присоединительная проекция (D)	mm	82	82	82	82	82	82	82
Количество вентиляторов	n°	1	2	2	1	1	2	2

UNIT NET Macca		10	10P	15	20	25	40	40P
	kg	33	37	47	59	88	88	108
6-рядный	kg	35	38	49	61	92	92	108

TN

Канальные доводчики Расход воздуха от 2300 до 23000 м3/час

Канальные доводчики серии TN предназначены для коммерческих и промышленных установок для средних помещений.

Серия состоит из восьми типоразмеров с расходом воздуха от 2300 до 23000 м3/час и предназначена для очистки, охлаждения и/или нагрева воздуха.

Производительность обеспечивается за счет высокоэффективных теплообменников и высоконапорных вентиляторов, соединенных с электродвигателем посредством ременно-шкивной передачи.

Компактность, низкий уровень шума, а также широкий ассортимент аксессуаров дает серии TN большую гибкость для того, чтобы адаптироваться к требованиям заказчика.

В дополнение к возможности преобразования модели из горизонтального положения в вертикальное, и наоборот, она была выбрана, чтобы добавить расширенную конфигурацию для обеспечения более высокого давления вентилятора.

Особенности

МОДИФИКАЦИИ:

- 8 доступных типоразмеров в вертикальной конфигурации с возможность изменить их в горизонтальную конфигурацию.
- Улучшенная конфигурация для обеспечения более высокого давления вентилятора.
 РАМА:
- Рама изготовлена из алюминиевого профиля с сэндвич-панелями внутренний лист оцинкованная сталь, наружный лист оцинкованная сталь с изоляцией из полиуретана (плотность 40 кг/м3) и общей толщиной 25 мм, цвет RAL 9002. Крепление панелей с помощью специального замкового профиля, обеспечивает идеальное уплотнение между панелью и рамой и лёгкость монтажа/демонтажа панелей.

Угловые элементы выполнены из нейлона • усиленного фибергласом.

Поддон для сбора конденсата из оцинкованной стали, снабжен сливным резьбовым соединением с обеих сторон и подходит для горизонтальной и вертикальной установки устройства.

ВЕНТИЛЯТОРЫ:

• Высокопроизводительные центробежные вентиляторы двухстороннего всасывания, вперед загнутые лопатки вентилятора.

моторы:

Электромоторы асинхронные трехфазные, с закрытой рамой и внешней вентиляцией, отвечающие стандарту IEC, CEI, UNEL (класс защиты IP55), одна скорость (4 полюса).

ТРАНСМИССИЯ:

• Шкивы с изменяемым диаметром для лучшей установки вентилятора.

Ремни могут быть SPA типа или SPB типа. Они поставляются с коническим зажимом типа "Taperlock", статически и динамически сбалансированы.

ВОДЯННЫЕ ТЕПЛООБМЕННИКИ:

 Водяные теплообменники изготавливаются из медных труб и алюминиевых ребер, закрепляемых методом механического расширения труб;

Главные теплообменники могут быть четырех или шестирядные (для охлаждения или нагрева) и двух, трех, четырехрядные вторичные (только нагрев).

Фильтрация осуществляется синтетическими фильтрами толщиной 50 мм эффективности класса G4 (в соответствии с EN 779) размещенными на стороне всасывания.

ФИЛЬТРЫ:

Фильтры легко снимаются для облегчения их обслуживания и чистки; они расположены на направляющих в главной секции теплообменника.

Удалить фильтры можно потянув их вбок через дверь на панели.

Вместе с оборудованием FTMхT фильтрация осуществляется с помощью компактных фильтров со степенью фильтрации F7.

- PLxT всасывающий и раздающий пленумы: совместимый с GAxT, GMxT и TPPLxT.
- FT7MxT компактные фильтры F7 устанавливаются на напорной стороне: совместимы с GMxT, SAxT и TPPxT.
- B2RxT B3RxT B4RxT нагревательные водяные теплообменник 2 3 4 рядные системы на 4 трубы.
- **SAxT** заслонка всасывания: для установки на базовый блок или на пленумах.
- GMxT заборная решетка с регулируемыми ребрами: для установки на базовый блок или на пленумах.
- GAxT заборная решетка с фиксированными ребрами, изогнутая под углом 45°: для установки на базовый блок или на пленумах.
- TPVSxT защита крыши для вертикальной установки с выбросом вверх: для установки на базовый блок.
- TPVFxT защита крыши для вертикальной установки: для установки на PLxT, FT7MxT и вертикального базового блока с выбросом вперед.
- TPLxT защита крыши для горизонтальной модификации с выбросом вперед: для установки на базовый блок.
- TPPLxT пленумы защиты крыши для горизонтальной установки с выбросом вперед: для установки на PLxT и FT7MxT типоразмеры от 3 до 8.
- ТРFTLxТ крыша для карманного фильтра при линейной установке с выбросом вперёд.
- P50MBT поддерживающие опоры для угловых элементов для горизонтальных и вертикальных модификаций.
- Р50АСТ поддерживающие опоры боковых элементов для горизонтальной модификации.

	Montage	TN1	TN2	TN3	TN4	TN5	TN6	TN7	TN8
GAxT	V - O	GA1T	GA2T	GA3T	GA4T	GA5T	GA6T	GA7T	GA8T
GMxT	V - O	GM1T	GM2T	GM3T	GM4T	GM5T	GM6T	GM7T	GM8T
SAxT	V - O	SA1T	SA2T	SA3T	SA4T	SA5T	SA6T	SA7T	SA8T
B2RxT	V - O	B2R1T	B2R2T	B2R3T	B2R4T	B2R5T	B2R6T	B2R7T	B2R8T
B3RxT	V - O	B3R1T	B3R2T	B3R3T	B3R4T	B3R5T	B3R6T	B3R7T	B3R8T
B4RxT	V - O	B4R1T	B4R2T	B4R3T	B4R4T	B4R5T	B4R6T	B4R7T	B4R8T
PLxT	V - O	PL1T	PL2T	PL3T	PL4T	PL5T	PL6T	PL7T	PL8T
FT7MxT	V - O	FT7M1T	FT7M2T	FT7M3T	FT7M4T	FT7M5T	FT7M6T	FT7M7T	FT7M8T
TPVSxT	V	TPVS1T	TPVS2T	TPVS3T	TPVS4T	TPVS5T	TPVS6T	TPVS7T	TPVS8T
TPVFxT	V	TPVF1T	TPVF2T	TPVF3T	TPVF4T	TPVF5T	TPVF6T	TPVF7T	TPVF8T
TPLxT	О	TPL1T	TPL2T	TPL3T	TPL4T	TPL5T	TPL6T	TPL7T	TPL8T
TPPLxT	О	TPPL1T	TPPL2T	TPPL3T	TPPL4T	TPPL5T	TPPL6T	TPPL7T	TPPL8T
TPFTLxT	О	TPFTL1T	TPFTL2T	TPPL3T	TPPL4T	TPPL5T	TPPL6T	TPPL7T	TPPL8T
P50MBT	V - O				P50	MBT			
P50ACT	О				P50	ACT			

V - O = Это оборудование может быть установлено на вертикальную и горизонтальную модификацию;

У = Это оборудование может быть установлено только на вертикальную модификацию;

О = Это оборудование может быть установлено только на горизонтальную модификацию;

Макс: раскод воздуха 1 m/h 300 410 610 780 170 1700 200 1700					TN1	TN2	TN3	TN4	TN5	TN6	TN7	TN8
Маке, расход воздуха д гм 3 см 4 6 6 6 6 6 7 10 10 10 10 10 10 10 10 20 20 20 10 10 10 20 20 10 20 10 20 20 10 20 10 20 20 20 20 10 20	Макс. расход воздуха	1		m³/h								
Региснатаемый напор вентикиторов 4 Баскимальный располагаемый напор (м. м. м	· · · · · · · · · · · · · · · · · · ·	2		m³/h	3500	4700	6400	8000	10000	13400	17800	20000
Максимальный располагаемый напор 4 Базовый боль Pa 215 235 236 226 156 193 207 131 Максимальный располагаемый напор боженняком 4 Увемиченный боль Pa 390 407 458 454 340 438 366 37 131 Мощность охлаждения с 4-радным тепло- обменняком 5 Помная kW 10,6 21,3 29,1 26,2 33,3 41,7 55,1 70,9 Мощность охлаждения с 4-радным тепло- обменняком 6 Помная kW 20 27,4 37,7 90,2 33,3 41,5 55,1 70,9 Мощность охлаждения с 4-радным тепло- обменняком 6 Помная kW 12 16,4 22,4 29,3 37,5 46,9 62,1 79,8 Мощн нагрева с 5-радным тепло-обменняком 7 kW 25,2 34 46,8 61,5 48,4 40,3 17,2 19,3 18,2 Мошн нагрева с 3-радным тепло-обменняком 7 kW <t< td=""><td>Макс. расход воздуха</td><td>3</td><td></td><td>m³/h</td><td>3500</td><td>4700</td><td>6400</td><td>8400</td><td>10900</td><td>13400</td><td>17800</td><td>23000</td></t<>	Макс. расход воздуха	3		m³/h	3500	4700	6400	8400	10900	13400	17800	23000
Максимальный располагаемый напор 4 Базовый боль Pa 215 235 236 226 156 193 207 131 Максимальный располагаемый напор боженняком 4 Увемиченный боль Pa 390 407 458 454 340 438 366 37 131 Мощность охлаждения с 4-радным тепло- обменняком 5 Помная kW 10,6 21,3 29,1 26,2 33,3 41,7 55,1 70,9 Мощность охлаждения с 4-радным тепло- обменняком 6 Помная kW 20 27,4 37,7 90,2 33,3 41,5 55,1 70,9 Мощность охлаждения с 4-радным тепло- обменняком 6 Помная kW 12 16,4 22,4 29,3 37,5 46,9 62,1 79,8 Мощн нагрева с 5-радным тепло-обменняком 7 kW 25,2 34 46,8 61,5 48,4 40,3 17,2 19,3 18,2 Мошн нагрева с 3-радным тепло-обменняком 7 kW <t< td=""><td>Располагаемый напор вентиляторов</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Располагаемый напор вентиляторов											
Мощность охлаждения с 4-рядным тепло обменником обмен	·	4	Базовый блок	Pa	215	235	236	226	156	193	207	131
Обменником Банан IRW 10,7 11,7 20,1 20,2 33,3 41,7 51,1 70,0 Мощиность охлаждения с 6-рядным тепло обменником 1 Rual RW 20 27,4 37,0 49,2 81,3 31,0 80,2 21,2 30,4 10,1 51,6 98,2 12,8 30,2 21,2 34,1 51,6 98,2 12,0 30,2 21,2 31,3 31,3 31,3 31,3 31,3 31,3 31,3 31,3 31,3 31,3 31,3 31,3 31,3 31,3 31,3 31,3 31,0 31	Максимальный располагаемый напор	4		Pa	390	407	458	454	340	438	396	381
Обменником Явная kW 1,07 14,7 21,1 26,2 33,3 41,7 51,1 70,9 Мощность охлаждения с 6-рядным теплообмеником 7 RBHAR kW 20 27,4 37,5 49,2 58,3 74,5 98,9 127,8 88,6 88,5 88,6 88,7 46,8 46,1 37,6 46,0 62,1 79,4 96,6 120,3 150,2 150,2 46,0 48,0 48,0 48,0 48,0 48,0 48,0 4	Мощность охлаждения с 4-рядным тепло-	_	Полная	kW	15,6	21,3	29,1	38,1	44,8	56,7	74,7	96,4
обменником 5 Явная kW 13,4 18,3 25,2 32,8 41,1 51,8 68,8 88,5 Мощность охлаждения с 4-рядным теплообменником 6 Явная kW 12 16,4 25,0 25,3 37,5 46,9 62,1 79,3 120,2 Мощность охлаждения с 6-рядным теплообменником 7 kW 23,9 32,9 45,3 36,9 46,4 36,3 77,4 96,6 Мощн нагрева с 2-рядным теплообменником 7 kW 3,5 45,5 62,7 81,0 13,1 18,2 23,4 48,5 62,7 81,0 13,3 18,2 23,4 48,5 62,7 81,0 10,8 13,2 13,2 13,2 11,0	обменником	3	Явная	kW	10,7	14,7	20,1	26,2	33,3	41,7	55,1	70,9
обменником Яваи kW 13,4 25,2 32,6 41,7 51,6 68,6 85,5 Мощность охлаждения с 4-рядиым генообмеником 7 Пояная kW 18,9 25,8 35,3 46,3 51,0 70,7 93,3 120,2 Мощность охлаждения с 6-рядиым генообмеником 7 Пояная kW 23,9 42,9 32,0 45,0 60,0 10,3 15,1 Мощн нагрева с 2-рядиым теплообмеником 7 kW 25,2 48,0 61,5 84,0 13,3 18,3 18,3 18,3 18,3 18,3 18,3 18,3 18,0 18,0 21,0 28,0 48,0 35,5 48,0 36,0 48,0	Мощность охлаждения с 6-рядным тепло-	-	Полная	kW	20	27,4	37,7	49,2	58,3	74,5	98,9	127,8
Обменником Намая kW 12 16,4 22,4 29,3 37,5 46,9 62,1 79,8 Мощирсть охлаждения с 6-рядным теплообменником обменником обменн	обменником	5	Явная	kW	13,4	18,3	25,2	32,8	41,1	51,8	68,8	88,5
обменником Явная КW 12 16,4 22,4 29,3 37,5 46,9 62,1 79,4 15,5 15,5 15,0 15,1 15,2 23,4 40,4 46,8 61,7 8,4 10,3 13,3 18,5 27,3 30 46,4 13,3 18,5 27,3 30 46,4 10,3 13,1 10,2 12,1 27,3 10,1 10,2 10,1 31,3 13,0 10,3 10,3 10,3 10,3 10,3 10,3 10,3 10,3 10,3 10,3 10,3 10,3 10,3 10,3	Мощность охлаждения с 4-рядным тепло-		Полная	kW	18,9	25,8	35,3	46,3	56,1	70,7	93,3	120,2
Оменником 6 Ваная kW 15 20,5 28,3 36,9 46,4 58,3 77,4 97,0 Мощи, нагрева с 2-рядным теплообменником пощи, нагрева с 3-рядным теплообменником общин, нагрева с 3-рядным теплообменником теплообменником общин, нагрева с 3-рядным теплообменником общин, нагрева с 3-ря	обменником	О	Явная	kW	12	16,4	22,4	29,3	37,5	46,9	62,1	79,8
обменником 9 вная kW 15 20,5 28,3 36,9 46,4 58,3 77,4 99,6 Мощи, нагрева с 2-рядным теплообменником Кощин, нагрева с 3-рядным теплообменником Кощин, нагрева с 4-рядным теплообменником С 1 RW 37,5 45,6 62,7 82,1 11,0 137,3 182,5 23,4 Мощи, нагрева с 3-рядным теплообменником Кощин, нагрева с 2-рядным теплообменником С 2 RW 48,7 66,6 91,5 11,0 19,0 26,0 30,1 16,0 91,0 191,0 103,0 40,0 40,0 46,0 91,0 11,0 103,0 40,0	Мощность охлаждения с 6-рядным тепло-		Полная	kW	23,9	32,9	45,3	59,2	71,6	90,6	120,3	155,1
Мощин. нагрева с 3-рядным тегллообменником 7 kW 33,5 45,6 62,7 82 110,8 137,3 182,5 23,44 Мощи. нагрева с 4-рядным тегллообменником 7 kW 40 54,5 74,9 97,6 131,1 162,9 216,1 277,3 Мощи. нагрева с 6-рядным тегллообменником 8 kW 44,7 19,6 21,5 19,2 196,3 80,1 130,3 Мощи. нагрева с 2-рядным тегллообменником 8 kW 14,7 19,6 26,6 36,6 47,9 64,4 79,8 106,1 136,3 Мощи. нагрева с 3-рядным тегллообменником 8 kW 23,4 31,9 43,7 57 64,4 79,8 106,1 136,3 Мощи. нагрева с 4-рядным тегллообмеником 8 kW 23,4 31,9 43,7 57 67,3 94,8 125,8 161,4 Мощи. нагрева с 4-рядным тегллообмеником 8 kW 23,4 31,9 43,7 57 76,3 94,8 125,8 161,4 Висть обомеником 9		6	Явная	kW	15	20,5	28,3	36,9	46,4	58,3	77,4	99,6
Мощин. нагрева с 3-рядным тегллообменником 7 kW 33,5 45,6 62,7 82 110,8 137,3 182,5 23,44 Мощи. нагрева с 4-рядным тегллообменником 7 kW 40 54,5 74,9 97,6 131,1 162,9 216,1 277,3 Мощи. нагрева с 6-рядным тегллообменником 8 kW 44,7 19,6 21,5 19,2 196,3 80,1 130,3 Мощи. нагрева с 2-рядным тегллообменником 8 kW 14,7 19,6 26,6 36,6 47,9 64,4 79,8 106,1 136,3 Мощи. нагрева с 3-рядным тегллообменником 8 kW 23,4 31,9 43,7 57 64,4 79,8 106,1 136,3 Мощи. нагрева с 4-рядным тегллообмеником 8 kW 23,4 31,9 43,7 57 67,3 94,8 125,8 161,4 Мощи. нагрева с 4-рядным тегллообмеником 8 kW 23,4 31,9 43,7 57 76,3 94,8 125,8 161,4 Висть обомеником 9	Мощн. нагрева с 2-рядным теплообменником	7		kW	25,2	34	46,8	61,5	84,4	103,8	138	178,5
Мощин. нагрева с 4-рядным теплообменником 7 kW 40 54,5 74,9 97,6 131,1 162,9 216,1 277,3 Мощин. нагрева с 4-рядным теплообменником 8 kW 48,7 66,6 91,5 119,2 157,5 196,8 260,4 334,1 Мощин. нагрева с 2-рядным теплообменником 8 kW 14,7 19,8 27,3 36 49 60,3 80,1 136,3 Мощин. нагрева с 3-рядным теплообменником 8 kW 23,4 31,9 43,7 57 76,3 94,8 125,8 161,4 Мощин. нагрева с 4-рядным теплообменником 8 kW 28,5 38,9 53,5 69,6 91,7 114,3 151,7 194,6 Мощин. нагрева с 4-рядным теплообменником 8 kW 28,5 38,9 53,5 69,6 91,7 114,3 11,7 11 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" </td <td></td> <td></td> <td></td> <td>kW</td> <td></td> <td>45,6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				kW		45,6						
Мощи. нагрева с 6-рядным теплообменником 7 kW 48,7 66,6 91,5 119,2 157,5 196,8 260,4 334,1 Мощи. нагрева с 2-рядным теплообменником 8 kW 14,7 19,8 27,3 36 49 60,3 80,1 103,8 Мощи. нагрева с 3-рядным теплообменником 8 kW 23,4 31,9 43,7 57 76,3 94,8 125,8 161,4 Мощи. нагрева с 3-рядным теплообменником 8 kW 23,4 31,9 43,7 57 76,3 94,8 125,8 161,4 Мощи. нагрева с 6-рядным теплообменником 8 kW 23,4 31,9 43,7 57 76,3 94,8 125,8 161,4 Мощи. нагрева с 6-рядным теплообменником 8 kW 23,4 31,9 43,7 57 76,3 94,8 125,8 161,4 Мощи. нагрева с 4-рядным теплообменником 8 kW 23,4 1" 1" 1" 1" 1" 1" 1" 1"		7		kW	40	54,5	74,9	97,6	131,1	162,9	216,1	
Мощи нагрева с 3-рядным теплообменником 8 kW 19,6 26,6 36,6 47,9 64,4 79,8 106,1 136,3 Мощи, нагрева с 4-рядным теплообменником 8 kW 23,4 31,9 43,7 57 76,3 94,8 125,8 161,4 Мощи, нагрева с 6-рядным теплообменником 8 kW 28,5 38,9 53,5 69,6 91,7 114,3 151,7 194,6 ТЕПЛООБМЕННИКИ Присоединительный диаметр 2-рядного теплообменника 1" 1" 1" 1" 1" 1,1"		7		kW	48,7	66,6	91,5	119,2	157,5	196,8	260,4	334,1
Мощи нагрева с 3-рядным теплообменником 8 kW 19,6 26,6 36,6 47,9 64,4 79,8 106,1 136,3 Мощи, нагрева с 4-рядным теплообменником 8 kW 23,4 31,9 43,7 57 76,3 94,8 125,8 161,4 Мощи, нагрева с 6-рядным теплообменником 8 kW 28,5 38,9 53,5 69,6 91,7 114,3 151,7 194,6 ТЕПЛООБМЕННИКИ Присоединительный диаметр 2-рядного теплообменника 1" 1" 1" 1" 1" 1,1"	Мощн. нагрева с 2-рядным теплообменником	8		kW	14,7	19,8	27,3	36	49	60,3	80,1	103,8
Мощн. нагрева с 4-рядным теплообменником мощн. нагрева с 6-рядным теплообменником в кW 28,5 38,9 53,5 69,6 91,7 114,3 151,7 194,6 ТЕПЛООБМЕННИКИ В кW 28,5 38,9 53,5 69,6 91,7 114,3 151,7 194,6 ТЕПЛООБМЕННИКИ 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1		8		kW	19,6	26,6	36,6	47,9	64,4	79,8	106,1	136,3
Мощн. нагрева с 6-рядным теплообменником 8 kW 28,5 38,9 53,5 69,6 91,7 114,3 151,7 194,6 ТЕПЛООБМЕННИКИ Присоединительный диаметр 2-рядного теплообменника 1"		8		kW	23,4	31,9	43,7	57	76,3	94,8	125,8	161,4
ТЕПЛООБМЕННИКИ 1"		8		kW			53.5	69.6		114.3		
теплообменника Присоединительный диаметр 3-рядного теплообменника Присоединительный диаметр 4-рядного теплообменника Присоединительный диаметр 4-рядного теплообменника Присоединительный диаметр 6-рядного теплообменника Присоединительный диаметр 4-рядного теплообменника Те	ТЕПЛООБМЕННИКИ											
Теплообменника Присоединительный диаметр 4-рядного теплообменника Присоединительный диаметр 6-рядного теплообменника Присоединительный диаметр 6-рядного теплообменника Присоединительный диаметр 6-рядного теплообменника 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1	• • • • • • • • • • • • • • • • • • • •				1"	1"	1"	1"	1"	1" 1/2	1" 1/2	1" 1/2
теплообменника Присоединительный диаметр 6-рядного теплообменника 1 " 1" 1" 1" 11 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·				1"	1"	1"	1"	1" 1/2	1" 1/2	1" 1/2	1" 1/2
теплообменника Диаметр трубки отведения конденсата ВЕНТИЛЯТОР Замите замите верей в замите в замите верей в замите в замит					1"	1"	1" 1/2	1" 1/2	1" 1/2	1" 1/2	1" 1/2	2"
Диаметр трубки отведения конденсата 3/4"F 4/00V/5"DHZ Питание/Полюсы (базовый блок) kW/n° 1,1/4 1,5/4 2,2/4 <td< td=""><td></td><td></td><td></td><td></td><td>1"</td><td>1"</td><td>1" 1/2</td><td>1" 1/2</td><td>1" 1/2</td><td>1" 1/2</td><td>2"</td><td>2"</td></td<>					1"	1"	1" 1/2	1" 1/2	1" 1/2	1" 1/2	2"	2"
ДВИГАТЕЛЬ Электропитание V/n°/ Hz 400V/3/50Hz 400V/3/50Hz Питание/Полюсы (базовый блок) kW/n° 0,75 /4 1,1/4 1,5/4 2,2/4 2,2/4 4/4 4/4 5,5/4 5,5/4 7,5/4 Питание/Полюсы (увеличенный блок) kW/n° 1,1/4 1,5/4 2,2/4 3/4 3/4 5,5/4 5,5/4 7,5/4 ФИЛЬТРЫ Эффективность плоского фильтра (аксессуар) 9 G4	Диаметр трубки отведения конденсата											
У/п°/ Нz 400V/3/50Hz Питание/Полюсы (базовый блок) kW/n° 0,75 /4 1,1/4 1,5/4 2,2/4 2,2/4 2,2/4 4/4 4/4 5,5/4 Питание/Полюсы (увеличенный блок) kW/n° 1,1/4 1,5/4 2,2/4 3/4 3/4 3/4 5,5/4 5,5/4 7,5/4 ФИЛЬТРЫ 9 G4 G	ВЕНТИЛЯТОР				280	280	315	315	400	400	500	500
Нт на ние/Полюсы (базовый блок) Нт ние/Полюсы (базовый блок) КМ/n° 0,75 /4 1,1/4 1,5/4 2,2/4 2,2/4 4/4 4/4 5,5/4 5,5/4 5,5/4 7,5/4 Питание/Полюсы (увеличенный блок) kW/n° 1,1/4 1,5/4 2,2/4 3/4 3/4 3/4 5,5/4 5,5/4 7,5/4 4 7,5/4 4 64 64 64 64 64 64 64 64 64 64 64 64 64	ДВИГАТЕЛЬ											
Митание/Полюсы (одзовый олок) кW/n° /4 1,1/4 1,5/4 2,2/4 2,2/4 4/4 4/4 4/4 5,5/4 5,5/4 5,5/4 7,5/4 ФИЛЬТРЫ Эффективность плоского фильтра (аксессуар) 9 G4	Электропитание							400V/3	3/50Hz			
ФИЛЬТРЫ Эффективность плоского фильтра 9 G4	Питание/Полюсы (базовый блок)				/ 4						,	
Эффективность плоского фильтра 9 G4				kW/n°	1,1 / 4	1,5 / 4	2,2/4	3/4	3/4	5,5 / 4	5,5 / 4	7,5 / 4
Эффективность компактного фильтра (аксессуар) 9 F7												
(akceccyap) 9 F7 F7 F7 F7 F7 F7		9			G4	G4	G4	G4	G4	G4	G4	G4
Звуковое давление на выхлопе 10 52 54 55 57 56 58 59 64		9			F7	F7	F7	F7	F7	F7	F7	F7
	Звуковое давление на выхлопе	10			52	54	55	57	56	58	59	64

Примечание (1): С теплообменником охлаждения;

Примечание (2): С теплообменником нагрева, базовый блок;

Примечание (3): С теплообменником нагрева, увеличенный блок;

Примечание (4): Максимальный расход воздуха с одним 4-рядным теплообменником

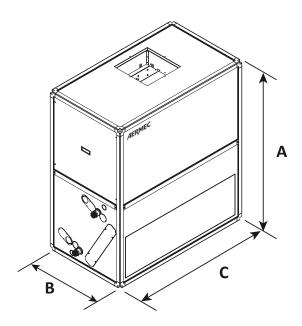
охлаждения и фильтром G4 средней загрязненности;

Примечание (5): Температура наружного воздуха на входе 27° С сухой термометр/19° С мокрый термометр;

температура воды (Вход/Выход) 7°С - 12°С;

Примечание (6): Температура наружного воздуха на входе 27° С сухой термометр/19° С мокрый термометр;

температура воды (Вход/Выход) 5°С - 10°С;


Примечание (7): Температура наружного воздуха на входе 10°C; температура воды (Вход/Выход) 70° С - 60°C;

Примечание (8): Температура наружного воздуха на входе 10°C; температура воды (Вход/Выход) 45° С - 40°C;

Примечание (9): В соответствии с Положением ЕN 779;

Примечание (10): На расстоянии d = 10 м, с фактором направленности Q = 2, для базовой версии

при работе с минимальным напором, на номинальном расходе воздуха с теплообменником охлаждения.

TN модели			TN1	TN2	TN3	TN4	TN5	TN6	TN7	TN8
Высота	Α	mm	1334	1334	1497	1497	1822	1822	2309	2309
Ширина	В	mm	684	684	765	765	828	828	1172	1172
Глубина	С	mm	928	1172	1334	1659	1659	1984	1984	2472
Вес (базовая модиф. с 6-рядным теплообменником)		Кг	190	220	275	320	415	475	630	807
Вес (увеличенная модиф. с 6-рядным теплообменником)		Кг	200	223	283	321	417	502	657	813

NCS

Центральные кондиционеры с толщиной панелей корпуса 25 мм и производительностью по воздуху от 1000 до 45000 м3/час

Характеристики

- Корпус на алюминиевой раме с закругленными усиленными угловыми элементами из нейлона черного цвета. Панели корпуса крепятся к раме без использования винтовых соединений.
- Клапана из алюминия с лопастями аэродинамической формы, конструкционно обеспечивающие малую турбулентность;
- Система фильтрации позволяет использовать все типы фильтров, применяемые
- при обработке воздуха, гарантируя соответствие всем документам, регламентирующим качество воздуха.
- Теплообменники изготавливаются съемными (монтируются на салазках) из различных материалов в соответствии с их назначением.
- Система увлажнения выбирается в соответствии с запросом заказчика.
- Вентиляторные агрегаты с загнутыми впе-
- ред или наклоненными назад лопатками.
- Шумоглушители различной длины, с заполнением минеральной ватой.
 Минеральная вата защищена пленкой из полиэстра и перфорированной металлической сеткой.
- Современные рекуператоры и теплообменники, соответствующие новейшим требованиям по энергосбережению.

Дополнительное оборудование

Широкий выбор дополнительного оборудования осуществляется с помощью современной программы подбора, позволяющей спроектировать кондиционер в короткие сроки.

Технические характеристики

		Расход Ск	х воздуха (м3/ч орость (м/с))	NCS		Расход в Скор	оздуха (м3/ч) ость (м/с)	
	2	2,5	3	3,5		2	2,5	3	3,5
1	907	1134	1361	1588	10	7582	9477	11372	13268
2	1566	1958	2349	2741	11	9238	11548	13857	16167
3	1912	2390	2867	3345	12	11370	14213	17055	19898
4	2506	3132	3758	4385	13	13582	16978	20373	23769
5	3059	3823	4588	5352	14	17055	21319	25583	29847
6	3445	4307	5168	6029	15	20609	25761	30913	36065
7	4206	5257	6308	7360	16	24618	30772	36926	43081
8	4966	6207	7449	8690	17	29711	37139	44566	51994
9	6415	8019	9623	11227					

Скорость: Фронтальная скорость на теплообменнике

Размеры (мм)

	Наружны	е размеры	Внутренние	размеры
NCS	Ширина	Высота	Ширина	Высота
1	684	521.5	613	409.5
2	1009	521.5	938	409.5
3	1171.5	521.5	1100.5	409.5
4	1009	684	938	572
4 5 6	1171.5	684	1100.5	572
6	1009	846.5	938	734.5
7	1171.5	846.5	1100.5	734.5
8	1334	846.5	1263	734.5
9	1659	846.5	1588	734.5
	Наружны	е размеры	Внутренние	размеры
	Ширина	Высота	Ширина	Высота
10	1659	1009	1588	897
11	1984	1009	1913	897
12	1984	1171.5	1913	1059.5
13	2309	1171.5	2238	1059.5
14	1984	1659	1913	1547
15	1984	1984	1913	1872
16	2309	1984	2238	1872
17	2309	2309	2238	2197

наружная высота не включает высоту опор (120 мм)

NCD, NCT Центральные кондиционеры

Aermec participates in the EUROVENT Certification Program.

The products of interest figure in the EUROVENT Guide of Certified products.

Особенности

- Центральные кондиционеры 24 типоразмеров с двойным покрытием панелей корпуса (толщина панелей 50 мм.)
- Прочный несущий корпус с рамой из алюминиевого профиля и возможностью выбора материала панелей.
- Широкий выбор моделей и комплектующих, обеспечивающий соответствие требованиям конкретной системы.
- Двухсекционные центробежные вентиляторы с загнутыми вперед или наклоненными назад лопастями, рассчитанные на работу при высоком, умеренном или низком давлении.
- Вентиляторно-моторный агрегат, находящийся в отдельной секциикорпуса, оснащается инверторнымрегулятором скорости.

Основные особенности

• Корпус на алюминиевой раме с закругленными угловыми элементами, предотвращающими сколение грязи как снаружи, так и внутри.

- Новый материал панелей и уплотнений, гарантирующий уровень герметичностивыше, чем требуемый по стандарту EN1886.
- Пониженный уровень шума, обеспечиваемый использованием материалов с высоким шумопоглошением.
- Небольшие габариты и вес установок.

Компоненты

- Новые высокоэффективные теплообменники с малым уровнем падения давления.
- Смесительная камера с тремя клапанами.
- Конфигурация смесительной камеры возможны следующие:
- два наружных верхних клапана и одинвнутренний для рециркуляции;
- два наружных фронтальных клапана и один горизонтальный для рециркуляции, для внешнего подсоединения установки;
- два боковых клапана и одинвнутренний для рециркуляции (конфигурация для выброса и заборавнешнего воздуха без воздуховодной сети)

- Широкий выбор фильтров с увеличенной площадью поверхности, с уменшенными потерями давления и увеличенным сроком службы:
- префильтры:
- рулонные фильтры;
- фильтры мешочного типа;
- фильтры высокой степени очистки до 14 класса:
- фильтры активированным бактерицидные лампы;
- Новые каплеотбойники из пластика ПВХ.
- Новые высокоэффективные рекуператоры.

Электрические компоненты

- Электронные регулировки используются для достижения оптимальной производительности и упрощения контроля за установкой.
- Новая программа подбора.

Дополнительное оборудование

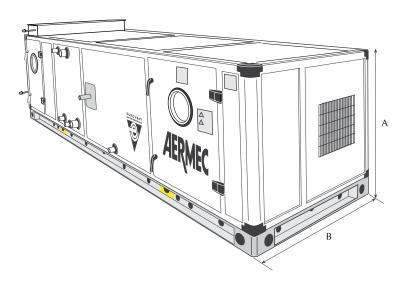
Воздухозаборные и воздуховыбросные камеры:

- фланцы
- дополнительные панели
- сетка на воздухоприемной или воздуховыбросной системе с клапаном или безклапана, с заземляющим проводом алюминиевая решетка для внутреннегоклапана
- клапаны с ручным регулированием
- клапаны с пропорциональным приводом клапаны с пропорциональным приводом и возвратной пружиной
- усиленная решетка для клапанов, устана-
- вливаемых в перекрытие.

Вентиляторные секции:

- клапаны на вентиляторную секцию защитный клапан (по давлению)
- микровыключатель на лючке обслужи-

Аксессуары общего назначения:


- лампа подсветки на 24B со смотровым окном, питание 24B обеспечивает заказчик
- манометры
- датчики давления
- установочные гильзы для датчиков диаметром 1/4
- усиленное дно из стального диста с антипроскальзывающим рельефом.

	Расход воздуха, м3/ч	Площадь теплообменника, м2
NCD 1	1.134	0,13
NCD 2	1.958	0,22
NCD 3	2.390	0,27
NCD 4	3.132	0,35
NCD 5	3.823	0,42
NCD 6	4.307	0,48
NCD 7	5.257	0,58
NCD 8	6.207	0,69
NCD 9	8.019	0,89
NCD 10	9.477	1,05
NCD 11	11.548	1,28
NCD 12	14.213	1,58

	Расход воздуха, м3/ч	Площадь теплообменника, м2
NCD 13	16.978	1,89
NCD 14	19.742	2,19
NCD 15	25.761	2,86
NCD 16	30.772	3,42
NCD 17	37.139	4,13
NCD 18	47.187	4,80
NCD 19	49.235	5,47
NCD 20	55.283	6,14
NCD 21	61.331	6,81
NCD 22	67.379	7,49
NCD 23	73.427	8,16
NCD 24	79.475	8,83

Указанные характеристики соответствуют скорости воздушного потока в теплообменнике, равной 2,5 м/с..

Размеры (мм)

Секция А	Секция В
645	735
645	1055
645	1215
805	1055
805	1215
965	1055
965	1215
965	1375
965	1695
1130	1695
1130	2015
1285	2015
	645 645 645 805 805 965 965 965 965 1130

-	Секция А	Секция В
	Секция Л	секция в
NCD 13	1285	2335
NCD 14	1285	2655
NCD 15	2085	2015
NCD 16	2085	2335
NCD 17	2405	2335
NCD 18	2405	2655
NCD 19	2405	2975
NCD 20	2405	3295
NCD 21	2405	3615
NCD 22	2405	3935
NCD 23	2405	4255
NCD 24	2405	4575

NCT H

Кондиционеры медицинские

Aermec participates in the EUROVENT FCP Certification Program.
The products of interest appear in the EUROVENT

Guide of Certified products

Особенности

Вентиляторные секции, теплообменники, фильтры и воздухозаборные камеры:

- Вентиляторные секции любых размеровв корпусе из стали или других материалов со специальной обработкой, снабженные несущими направляющими и опорами минимальной массы;
- Теплообменники и системы рекуперациитепла с водостойкими трубками и оребрением из меди, нержавеющей стали имеди или нержавеющей стали;
- Фильтры класса F7, расположенныеперед секцией воздухозаборника или вместах поступления воздуха;
- Фильтры класса F8/F9, расположенныепосле воздухозаборника (имеется возможность применения бактерицидных-
- Внешние воздухозаборные устройства, рассчитанные на скорость воздушногопотока менее 2 м/с и оборудованные защитными решетками. Секции увлажнения воздуха, глушители и устройства для удаления капель влаги:

- Паровые увлажнители воздуха прямогодействия или с использованием погружных электродов;
- Возможность установки увлажнительных секций на оптимальном расстоянии отпоследующих секций системы;
- Устройства для удаления капель влаги изматериалов с антибактериальной обработкой или из нержавеющей стали.

Надежность и безопасность:

- Сертификация в соответствии со стандартами программы EUROVENT;
- Комплектация, включающая все необходимые электрические и электронныекомпоненты, обеспечивающие надежность эксплуатации и снабженные маркировкой ЕС, что означает полное соответствие требованиям директив Евросоюза.

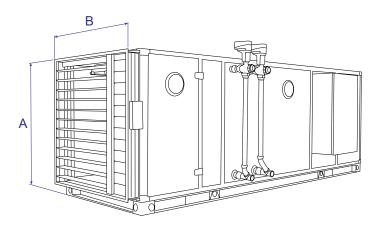
Осмотр и очистка секций:

• Отверстия для инспекции внутреннегопространства, дренажные устройства ивнутреннее освещение в каждой секции;

- Закругленные внутренние углы корпуса. предотвращающие скопление грязи;
- Минимальное число острых краев ищелей, герметизация всех мест сочленения;
- Дренажные отверстия с легко съемным заглушками.

Панели корпуса и внутренняя поверхность:

- Прецизионное совмещение рамы и панелей корпуса, обеспечивающее воздухонепроницаемость по классу В стандарта UNI EN 1886, подтвержденную сертификацией в лабораториях организации TUV;
- Конструкционные материалы, стойкие по отношению к образованию трещин, расслаиванию и истиранию, легко моющиеся и дезинфицируемые;
- Специальная антибактериальная обработка поверхностей по сертифицированной технологии, предотвращающая скопление вредоносных биологических веществ и бактерий.


Технические характеристики

	Расход воздуха, м3/ч	Площадь теплообменника, м2
NCT H 2	1800	0.202
NCT H 3	2520	0.278
NCT H 4	3130	0.348
NCT H 5	3820	0.425
NCT H 6	4500	0.502
NCT H 7	5080	0.566
NCT H 8	6230	0.690
NCT H 9	7340	0.815

	Расход воздуха, м3/ч	Площадь теплообменника, м2
NCT H 10	9470	1.053
NCT H 11	10730	1.191
NCT H 12	13860	1.539
NCT H 13	17500	1.944
NCT H 14	21300	2.369
NCT H 15	25780	2.862
NCT H 16	30780	3.419

Представленные значения соответствуют скорости воздуха через теплообменник равной 2,5м/с.

Размеры(мм)

	Секция А	Секция В
NCT H 2	805	735
NCT H 3	805	895
NCT H 4	805	1055
NCT H 5	805	1215
NCT H 6	805	1375
NCT H 7	1125	1055
NCT H 8	1125	1215
NCT H 9	1125	1375

	Секция А	Секция В
NCT H 10	1125	1695
NCT H 11	1445	1375
NCT H 12	1445	1695
NCT H 13	1765	1695
NCT H 14	1765	2015
NCT H 15	2085	2015
NCT H 16	2085	2335

PX, PW, GX, GW, RX

ПРЕЦИЗИОННЫЕ КОНДИЦИОНЕРЫ

- ВЫСОКОТЕХНОЛОГИЧНЫЕ ПРЕЦИЗИОННЫЕ КОНДИЦИОНЕРЫ ДЛЯ ТОЧНОГО ПОДДЕРЖАНИЯ ПАРАМЕТРОВ ВОЗДУХА В ОБСЛУЖИВАЕМЫХ ПОМЕЩЕНИЯХ.
- СЕРИЯ Р ДАННЫЕ УСТАНОВКИ ОПТИМИЗИРОВАНЫ ДЛЯ ИСПОЛЬЗОВАНИЯ В ЦЕНТРАХ ОБРАБОТКИ ДАННЫХ И АТС, А ТАКЖЕ В ДРУГИХ МЕСТАХ С ПРЕОБЛАДАНИЕМ ТЕПЛОВОЙ НАГРУЗКИ И НЕБОЛЬШИМ КОЛИЧЕСТВОМ ЛЮДЕЙ. ХАРАКТЕРИЗУЮТСЯ СРЕДНЕЙ ХОЛОДОПРОИЗВОДИТЕЛЬНОСТЬЮ. ДЛЯ УСТАНОВКИ ПО ПЕРИМЕТРУ ПОМЕЩЕНИЯ.
- СЕРИЯ G УСТАНОВКИ ДЛЯ БОЛЬШИХ ЦЕНТРОВ ОБРАБОТКИ ДАННЫХ. ХАРАКТЕРИЗУЮТСЯ БОЛЬШОЙ ПРОИЗВОДИТЕЛЬНОСТЬЮ. ДЛЯ УСТАНОВКИ ПО ПЕРИМЕТРУ ПОМЕЩЕНИЯ.
- СЕРИЯ R УСТАНОВКИ ДЛЯ БОЛЬШИХ ЦЕНТРОВ ОБРАБОТКИ ДАННЫХ. ПРЕДСТАВЛЯЮТ СОБОЙ УСТАНОВКИ ОДНОГО РАЗМЕРА С СЕРВЕРНЫМИ СТОЙКАМИ, СПЕЦИАЛЬНО РАЗРАБОТАННЫЕ ДЛЯ МОНТАЖА В РЯДЫ ВМЕСТЕ С СЕРВЕРНЫМИ СТОЙКАМИ.

Особенности

- Высокотехнологичные прецизионные кондиционеры для точного поддержания параметров воздуха в обслуживаемых помещениях.
- Холодопроизводительность от 6,7 до 261кВт • Модификации с непосредственным
- охлаждением и охлаждением водой. Широкий набор дополнительных аксессуаров и опций.
- Модификации, агрегатированные системой «свободного холода».
- Поддержка резервирования.
- Прецизионные (высокоточные) кондиционеры используются в стационарных телекоммуникационных сетях, компьютерных залах, переговорных комнатах, чистых помещениях, музеях, библиотеках, идругих технологических помешениях.
- Они могут применяться и в помещениях общего назначения – конференц залах, торговых центрах, ресторанах.

Минимально занимаемая площадь в техно-

логических помещениях всегла была преимуществом, поэтому прецизионные кондиционеры спроектированы с минимально возможными размерами и имеют одиниз лучших в отрасли показателей отношения холодопроизводительности к занимаемой площади.

Дополнительное оборудование

- Увлажнитель с погружными электродами и электронной модуляцией, с контролем осушения/увлажнения.
- Теплообменник нагрева/догрева с трехходовым регулирующим клапаном.
 • Осуществление нагрева/догрева в одну
- или две ступени.
- Встроенный водяной теплообменник с паяным оребрением.
- Контроль конденсации на выносном конденсаторе регулированием скорости вентиляторов.
- Трехходовой модулирующий вентиль.
 Электронный ТРВ.

- Автоматическое регулирование при изменении объема воздуха/статического давления
- Электронное регулирование вентилятора для сохранения постоянства объема воздуха/давления пропорционально требуемой производительности
- Фильтр на заборе воздуха G4 или F7
- Решетка на пленуме на забора или раздачи воздуха с фронтальной или с фронтальной и задней сторон
- Регулируемое основание/опоры
- Шумоглушащий корпус
- Специальная изоляция панелей
- Двойные панели типа «сэндвич»

- Сплошные панели корпуса при верхней и нижней раздаче/заборе воздуха
- Глушители на заборе/раздаче воздуха
- RS485 интерфейсная плата
- Датчик утечки воды

ПРЕЦИЗИОННЫЕ КОНДИЦИОНЕРЫ С РАЗДАЧЕЙ ВОЗДУХА ВНИЗ

РХО: блоки непосредственного охлаждения с воздушным или водяным конденсатором, с раздачей воздуха вверх

ТИПОРАЗМЕР		71a	111a	141a	211	251	301	302	361	372	422	461	491	512	612	662	852	932
Производительность																		
Общая хладопроизводительность (1)	КВТ	6,7	11,0	14,5	21,0	25,4	30,3	30,5	36,7	37,4	43,4	46,9	51,1	51,1	62,6	67,5	85,7	94,2
Явная хладопроизводительность (1)	КВТ	6,7	10,9	12,3	20,5	22,3	29,0	28,8	36,7	31,8	43,2	44,1	51,5	46,0	59,2	61,5	69,8	85,6
Расход воздуха	м³/ч	2.200	3.200	3.200	7.000	7.000	8.700	8.700	14.500	8.700	14.500	14.500	17.900	14.500	17.900	17.900	17.900	22.500
KЭЭ(EER)(2)		2,91	3,18	3,30	3,18	3,11	3,13	3,27	3,41	2,97	3,29	3,40	3,51	3,13	3,27	3,24	3,28	3,46
Уровень звукового давления (3)	дБ(А)	49	49	50	56	56	58	58	63	58	63	63	68	63	68	68	68	69
Габаритные размеры и вес																		
Длина	ММ	750	750	750	860	860	1.410	1.410	1.750	1.410	1.750	1.750	2.300	1.750	2.300	2.300	2.300	2.640
Ширина	ММ	600	600	600	880	880	880	880	880	880	880	880	880	880	880	880	880	880
Глубина	ММ	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990
Вес нетто	КГ	180	200	210	270	270	320	340	440	350	450	450	540	500	640	640	660	860

РХU: блоки непосредственного охлаждения с воздушным или водяным конденсатором, с раздачей воздуха вниз

ТИПОРАЗМЕР		71a	111a	141a	211	251	301	302	361	372	422	461	491	512	612	662	852	932
Производительность																		
Общая хладопроизводительность (1)	КВТ	6,7	11,0	14,5	21,0	25,4	30,3	30,5	36,7	37,4	43,4	46,9	51,1	51,1	62,6	67,5	85,7	94,2
Явная хладопроизводительность (1)	КВТ	6,7	10,9	12,3	20,5	22,3	29,0	28,8	36,7	31,8	43,2	44,1	51,5	46,0	59,2	61,5	69,8	85,6
Расход воздуха	м³/ч	2.200	3.200	3.200	7.000	7.000	8.700	8.700	14.500	8.700	14.500	14.500	17.900	14.500	17.900	17.900	17.900	22.500
КЭЭ(EER)(2)		2,91	3,18	3,30	3,18	3,11	3,13	3,27	3,41	2,97	3,29	3,40	3,51	3,13	3,27	3,24	3,28	3,46
Уровень звукового давления (3)	дБ(А)	49	49	50	56	56	58	58	63	58	63	63	68	63	68	68	68	69
Габаритные размеры и вес																		
Длина	ММ	750	750	750	860	860	1.410	1.410	1.750	1.410	1.750	1.750	2.300	1.750	2.300	2.300	2.300	2.640
Ширина	ММ	600	600	600	880	880	880	880	880	880	880	880	880	880	880	880	880	880
Глубина	ММ	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990
Вес нетто	КГ	180	200	210	270	270	320	340	440	350	450	450	540	500	640	640	660	860

Указанные технические характеристики относятся к следующим условиям:

PWO: блоки на охлажденной воде и с расдачей воздуха вверх

ТИПОРАЗМЕР		10a	20a	30	50	80	110	160	220
Производительность									
Общая хладопроизводительность (1)	KBT	10,3	18,9	30,4	39,0	66,6	87,5	142,5	175,1
Явная хладопроизводительность (1)	KBT	9,1	16,0	28,6	35,4	60,0	76,2	120,3	152,4
Расход воздуха	м³/ч	2.200	3.500	7.800	8.500	15.400	17.400	26.400	34.800
КЭЭ(EER)(2)		32,15	24,23	20,21	20,97	24,34	24,73	26,01	24,74
Уровень звукового давления (3)	дБ(А)	47	47	56	56	59	61	64	65
Габаритные размеры и вес									
Длина	ММ	750	750	860	860	1.750	1.750	2.640	3.495
Ширина	ММ	600	600	880	880	880	880	880	880
Глубина	ММ	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990
Вес нетто	КГ	155	160	220	240	340	360	540	700

¹⁾ Хладагент R410A, температура конденсации: 45°C, температура входящего воздуха 24°C при отн. влажности 50%, температура охлаждающей жидкости 7/12°C, статическое давление воздуха 30 Па.

²⁾ EER = полная холодопроизводительность/мощность компрессора + мощность двигателей вентиляторов (без учета вентиляторов конденсатора)

³⁾ Уровень звукового давления измерялся в свободном пространстве на расстоянии 2м, высоте 1,5м в условиях свободного поля с подсоединенным воздуховодом приточного воздуха.

ПРЕЦИЗИОННЫЕ КОНДИЦИОНЕРЫ С РАЗДАЧЕЙ ВОЗДУХА ВВЕРХ

PWU: блоки на охлажденной воде и с расдачей воздуха вниз

ТИПОРАЗМЕР		10a	20a	30	50	80	110	160	220
Производительность									
Общая хладопроизводительность (1)	KBT	10,3	18,9	30,4	39,0	66,6	87,5	142,5	175,1
Явная хладопроизводительность (1)	KBT	9,1	16,0	28,6	35,4	60,0	76,2	120,3	152,4
Расход воздуха	м³/ч	2.200	3.500	7.800	8.500	15.400	17.400	26.400	34.800
КЭЭ(EER)(2)		32,15	24,23	20,21	20,97	24,34	24,73	26,01	24,74
Уровень звукового давления (3)	дБ(А)	47	47	56	56	59	61	64	65
Габаритные размеры и вес									
Длина	ММ	750	750	860	860	1.750	1.750	2.640	3.495
Ширина	ММ	600	600	880	880	880	880	880	880
Глубина	ММ	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990
Вес нетто	КГ	155	160	220	240	340	360	540	700

Указанные технические характеристики относятся к следующим условиям:

- 1) Хладагент R410A, температура конденсации: 45°C, температура входящего воздуха 24°C при отн. влажности 50%, температура охлаждающей жидкости 7/12°C, статическое давление воздуха 30 Па.
- 2) EER = полная холодопроизводительность/мощность компрессора + мощность двигателей вентиляторов (без учета вентиляторов конденсатора)
- 3) Уровень звукового давления измерялся в свободном пространстве на расстоянии 2м, высоте 1,5м в условиях свободного поля с подсоединенным воздуховодом приточного воздуха.

GXU: Блоки непосредственного испарения с воздухо- или водоохлаждаемыми конденсаторами и раздачей воздуха вниз

ТИПОРАЗМЕР		461	612	932	1232	1342	1732
Производительность							
Общая хладопроизводительность (1) КВТ		46,1	60,8	92,7	123,3	138,8	171,5
Явная хладопроизводительность (1)	КВТ	42,3	49,9	82,9	98,0	127,6	143,4
KЭЭ(EER)(2)		3,52	3,08	3,57	3,18	3,43	3,36
Общая хладопроизводительность (1)	КВТ	52,2	65,4	104,3	130,3	153,6	186,4
Явная хладопроизводительность (1)	KBT	52,2	64,5	104,3	124,9	153,6	186,4
КЭЭ(EER)(2)		3,97	3,34	4,01	3,39	3,78	3,66
Расход воздуха	м³/ч	12.000	13.000	23.000	24.000	37.500	37.500
Уровень звукового давления (3)	дБ(А)	56	56	64	64	65	65
Габаритные размеры и вес							
Длина	ММ	1.490	1.490	2.390	2.390	3.290	3.290
Ширина	ММ	921	921	921	921	921	921
Глубина	ММ	1.990	1.990	1.990	1.990	1.990	1.990
Вес нетто	КГ	630	680	870	940	1.160	1.250

GWU: Блоки с теплообменником охложденной воды с раздачей воздуха вниз

ТИПОРАЗМЕР		70	150	230	300
Производительность					
Общая хладопроизводительность (1)	КВТ	60,6	130,9	198,1	261,7
Явная хладопроизводительность (1)	КВТ	52,8	110,1	166,2	220,3
KЭЭ(EER)(2)		28,96	31,66	31,90	31,02
Общая хладопроизводительность (1)	КВТ	47,7	101,0	152,5	202,0
Явная хладопроизводительность (1)	КВТ	47,7	101,0	152,5	202,0
КЭЭ(EER)(2)		13,33	26,98	27,04	26,38
Расход воздуха	м³/ч	12,000	24,000	36,000	48,000
Уровень звукового давления (3)	дБ(А)	54	58	64	64
Габаритные размеры и вес					
Длина	ММ	1,320	2,220	3,120	4,020
Ширина	ММ	921	921	921	921
Глубина	ММ	1.990	1.990	1.990	1.990
Вес нетто	КГ	610	750	930	1.250

- _ Указанные технические характеристики относятся к следующим условиям:
 - 1) Хладагент R410A, температура конденсации: 45°C, температура входящего воздуха 24°C при отн.влажности 50%, температура охлаждающей жидкости 7/12°C, статическое давление воздуха 30 Па.
- Ющей жидкости // 12 °С, статическое давление воздула 30 г м.
 2) Данные действительны для следующих значений: Хладагент R410; температура конденсации: 45°С; воздух на входе: 30°С 30% от. влажность; вода 14/20°С; статическое давление: 30Па. Данные значения не принимают во внимание тепло, выробатываемое вентиляторами, которая должно быть добавленно к значению тепловой нагрузки системы.
- 3) EER = полная холодопроизводительность/мощность компрессора + мощность двигателей вентиляторов (без учета вентиляторов конденсатора)
 - 4) Уровень звукового давления измерялся в свободном пространстве на расстоянии 2м, высоте 1,5м в условиях свободного поля с подсоединенным воздуховодом приточного воздуха.

RXA: Блоки непосредстенного испарения с воздухо- или водоохлаждаемыми конденсаторами и горизонтальной раздачей воздуха

ТИПОРАЗМЕР		231	361
Производительность			
Общая хладопроизводительность (1)	КВТ	23,3	28,5
Явная хладопроизводительность (1)	КВТ	23,3	26,7
КЭЭ(EER)(2)		3,55	3,50
Общая хладопроизводительность (1)	КВТ	25,0	31,6
Явная хладопроизводительность (1)	КВТ	25,0	31,6
КЭЭ(EER)(2)		3,83	3,88
Расход воздуха	м³/ч	7200	7200
Уровень звукового давления (3)	дБ(А)	69	69
Габаритные размеры и вес			
Длина	ММ	600	600
Ширина	ММ	1180	1180
Глубина	ММ	2000	2000
Вес нетто	КГ	215	215

RWU: Блоки с теплообменником охлажденной воды с горизонтальной раздачей воздуха

ТИПОРАЗМЕР		40
Производительность		
Общая хладопроизводительность (1)	КВТ	43,3
Явная хладопроизводительность (1)	КВТ	39,9
KЭЭ(EER)(2)		21,97
Общая хладопроизводительность (2)	КВТ	35,4
Явная хладопроизводительность (2)	KBT	35,4
КЭЭ(EER)(2)		18,34
Расход воздуха	м³/ч	9600
Уровень звукового давления (3)	дБ(А)	76
Габаритные размеры и вес		
Длина	ММ	600
Ширина	ММ	1180
Глубина	ММ	2000
Вес нетто	КГ	190

Указанные технические характеристики относятся к следующим условиям:

- 1) Хладагент R410A, температура конденсации: 45°C, температура входящего воздуха 24°C при отн.влажности 50%, температура охлаждающей жидкости 7/12°C, статическое давление воздуха 30 Па.
- 2) Данные действительны для следующих значений: Хладагент R410; температура конденсации: 45°C; воздух на входе: 30°C 30% от. влажность; вода 14/20°C; статическое давление: 30Па. Данные значения не принимают во внимание тепло, выробатываемое вентиляторами, которая должно быть добавленно к значению тепловой нагрузки системы.
- 3) EER = полная холодопроизводительность/мощность компрессора + мощность двигателей вентиляторов (без учета вентиляторов конденсатора)
- 4) Уровень звукового давления измерялся в свободном пространстве на расстоянии 2м, высоте 1,5м в условиях свободного поля с подсоединенным воздуховодом приточного воздуха.

020/202

Холодильные машины, тепловые насосы с воздушным охлаждением с осевыми вентиляторами: Производительность по холоду от 5,65 до 43,70 кВт Производительность по теплу от 6,27 до 45 кВт

R410A

Aermec adheres to the EUROVENT Certification Programme.

The products concerned appear in the EUROVENT Certified Products Guide.

- СТАНДАРТНАЯ МОДИФИКАЦИЯМОДИФИКАЦИЯ С ВОДЯНЫМ **HACOCOM**
- МОДИФИКАЦИЯ С ВОДЯНЫМ НАСОСОМ И НАКОПИТЕЛЬНЫМ
- МОДИФИКАЦИЯ С НАСОСОМ ВЫСОКОГО ДАВЛЕНИЯМ
- ВОЗМОЖНОСТЬ ИСПОЛЬЗОВАНИЯ ΔΛЯ ΠΟΔΓΟΤΟΒΚИ ΒΟΔЫ Β ΓΒС

Особенности

- 11 типоразмеров
- Модели, работающие только на охлаждение, тепловые насосы и компрессорно-конденсаторные агрегаты
- 5 модификаций:

ANL: стандартная модификация;

ANL P: модификация с водяным насосом, расширительным баком и механическим водяным фильтром

ANL N: модификация с насосом высокого давления

ANL A: модификация с водяным насосом, расширительным баком, механическим водяным фильтром и накопительным баком ANL Q: модификация с насосом высокого давления и накопительным баком

Высокоэффективные компрессоры спи рального типа с низким энергопотреблением

- Датчик перепада давления/реле протока в стандартной комплектации
- Электронное управление (Modu_control) Высокоэффективные теплообменники
- Вентиляторные агрегаты аксиального типа с предельно низким уровнем шума
- Металлический корпус антикоррозионным покрытием из полиэстера.

Дополнительное оборудование

- BDX: Поддон для сбора конденсата наружного блока.
- DCPX: Низко температурная система, обеспечи-
- вающая работу на охлаждение при наружной температуре менее 20°С до -10°С.

 Стандартные версии с пароохладителем

 DRE: Электронная система снижения пикового тока на 30%. Доступна только для трехфазных модификаций. Устанавливается на заводе изготовителе.
- **KR**: Электронагреватель защиты от замораживания пластинчатого теплообменника. Не используется в моделях типоразмеров 020А-НА до 0⁴0A-НА.
- Устанавливается на заводе изготовителе.
- KRB: электронагреватель защиты для основания. Предотвращает образование льда на основании
- станавливается на заволе изготовителе.
- PR3: Упрощенная панель дистанционного управления. Обеспечивает управление всеми основными функциями (включение / выключение и изменение режима работы, индикация аварийных ситуаций). При применении экранированного кабеля может быть
- установлена на расстоянии до 150 м. **MODU-485A**: Интерфейс RS-485 для связи с системой диспетчеризации по протоколу MODBUS.

- AERWEB300: Опция AERWEB обеспечивающая дистанционное управление работой холодильных машин с помощью персонального компьютера и интернет соединения
- через стандартный браузер; 4 версии: **AERWEB300-6**: Веб-сервер для дистационного управления максимум 6 установок через интерфейс RS485;
- **AERWEB300-18**: Веб-сервер для дистационного управления максимум 18 установок через интерфейс RS485; **AERWEB300-6G**: Веб-сервер для дистаци-
- онного управления максимум 6 установок через интерфейс RS485 со встроенным
- модемом GPRS; **AERWEB300-18G**: Веб-сервер для дистационного управления максимум 18 установок через интерфейс RS485 со встроенным
- MULTICONTROL: Позволяет одновременно управлять несколькими холодильными машинами или тепловыми насосами (до устанавливается с контроллером MODUCONTROL в одной гидравлической системе.

Для более полного использования возможностей этой системы предлагается следующее оборудование:

SPLW: Датчик воды системы. В большинстве случаев достаточно датчиков, которые поставляются в не смонтированном виде в комплекте каждого чиллера или теплового насоса. При установке в качестве обычного датчика расхода или на возвратном коллекторе датчик SPLW может использоваться для контроля температуры воды в чиллерах или просто для снятия значений.

SDHW: Датчик воды системы ГВС. Используется на накопительном баке для контроля температуры производимой горячей воды.

- **RA**: Электрический нагреватель накопительного бака.
- Устанавливается на заводе изготовителе.
- VT: Вибропоглощающие опоры корпуса. Совместим с системой управления VMF.
- Пожалуйста, обращайтесь к соответствующей документации

	Совместимо	СТЬ Д	опол	ните	льно	го об	оруд	ован	ия			
	Модиф.	20	25	30	40	50	70	80	90	102	152	202
PR3	(°) - H - C	~	~	~	~	~	~	~	~	~	~	~
MODU-485A	Все модиф.	~	~	1	1	~	~	~	~	~	~	~
AERSET	Все модиф.	~	~	1	1	~	1	~	~	~	~	~
AERWEB300	Все модиф.	~	~	~	~	~	~	~	~	~	~	~
MULTICONTROL	Все модиф.	~	~	~	~	~	~	~	~	~	~	~
SPLW	Все модиф.	~	~	~	~	~	~	~	~	~	~	~
SDHW	Все модиф.	~	~	~	~	~	~	~	~	~	V	V
DRE ¹	(°) - H - C	-	-	-	-	5	5	5	5	5x2	5x2	5x2
DCPX	(°) - C	50	50	50	50	50	50	50	50	52	52	52
DCIA	H	51	51	51	51	51	51	51	51	53	53	53
VT	(°) - H - HP - C	9	9	9	9	9	9	9	9	15	15	15
V 1	A	9	9	9	9	15	15	15	15	15	15	15
RA ³	A	~	1	1	~	/	1	~	~	~	1	~
BDX	(°) / P	5	5	5	5	5	5	5	5	-	-	-
DDA	A	5	5	5	5	6	6	6	6	-	-	-
KR ²³	(°) / P	2	2	2	2	2	2	2	2	2	2	2
N.	A	-	-	-	-	2	2	2	2	2	2	2
KR3 ³		-	-	-	-	-	-	-	-	~	~	~

- 1 Используется только при трехфазном питании (плюс нейтраль) 400В. Устанавливается на заводе изготовителе.
- Не используется на моделях ANL 020...040°A | НА.
- 3 Устанавливается только на заводе изготовителе.
- х2 Обозначает количество согласно заказа.

DCPX Стандарт для модификации с пароохладителем

Выбор модификации

Комбинируя различные опции, можно подобрать такую модель холодильной машины, которая наиболее полно отвечает требованиям заказчика.

Кодовые обозначения опций:

Код:

ANI

Типоразмер:

020, 025, 030, 040, 050, 070, 080, 090, 102, 152, 202

Модель:

Только охлаждение

Н Тепловой насос

Модификация:

• стандартная

Р с насосом

N с высоконапорным насосом

• типоразмеры ANL 100 - 150 - 202

A с накопительным баком и насосом

Q с накопительным баком и высоконапорным насосом

• типоразмеры ANL 50 - 70 - 80- 90 - 102 - 152 - 202

Рекуперация тепла:

• Без рекуперации

D с пароохладителем *

Оребрение теплообменника:

• Алюминивое

R Медное

- Для типоразмеров 102 152 202 в версии теплового насоса
- **S** Луженая медь
- Для типоразмеров 102 152 202 в версии теплового насоса
 V Алюминий с обработанной поверхностью (с эпоксидным покрытием)
 - эпоксидная краска для типоразмеров 102 152 202 в версии теплового насоса
 - электрофорезная обработка для типоразмеров 102 152 202 моделей, предназначенных только для охлаждения

Область применения:

- Стандартная
 - с охлаждением воды до 4°C

- **Z** Низкотемпературная
 - с охлаждением жидкости от 4°C до 0°C
- **Y** Низкотемпературная
 - с охлаждением жидкости от 0°C до -6°C

Испаритель:

• Стандартная

Электропитание:

М однофазное, 230 В, 50 Гц

- типоразмеры ANL 020 025 030 040
- ° трехфазное с нейтралью, 400 В, 50 Гц

Внимание

- Z,Y опции доступны для моделей "только холод"
- Стандартные модификации имеют обозначение «°».
- Имеются модификации с тепловым насосом (позиция 7, опции Н).
- Однофазное электропитание (позиция 13, опция M) возможно только для типоразмеров 020-025-030-040.
- *Полная рекуперация тепла доступна для типоразмеров с 50 по 90 только с баком аккумулятором, для типоразмеров от 100 до 200 для всех версий. Опция D несовместима с низкотемпературной опцией и недоступна для компрессорноконденсаторных блоков, даже с Q модификацией.

Пример кодового обозначения ANL090HAR:

Это модель теплового насоса серии ANL типоразмера 090 с накопительным баком, водяным насосом, медным оребрением теплообменника конденсатора и испарителем с компрессором, оборудованным электромотором с трехфазным питанием напряжением ~ 400 В, 50 Гц и нейтральной шиной. При заказе стандартной модификации символ «°» указывать не обязательно.

Технические характеристики

Модель				020°	025°	030°	040°	050°	070°	080°	090°	102°	152°	202°
		0	kW	5,65	6,15	7,44	9,53	13,31	16,39	20,35	22,14	26,34	32,69	42,60
Холодопроизводительность		P A	kW	5,71	6,21	7,52	9,64	13,47	16,59	20,60	22,40	26,93	33,48	43,49
		NQ	kW	-	-		-	13,73	16,9	20,9	22,72	27,07	33,7	43,7
		0	kW	1,89	2,05	2,52	3,32	4,12	4,98	6,48	6,79	8,06	10,31	13,53
Полная потр. мощность		P A	kW	1,92	2,07	2,52	3,30	4,10	4,92	6,39	6,69	8,07	10,53	13,79
, , , , , , , , , , , , , , , , , , ,		N Q	kW	-	-		-	4,18	5,01	6,48	6,79	8,46	10,58	13,83
	230V/1	0	A	6,43	7,3	8,17	10,78	-	-	-	-	_	-	-
	400V/3N	0	A	3,7	4,2	4,7	6,2	8,7	9,7	12,2	12,8	15,57	18,81	24,67
Полный потр. ток	230V/1	P A	Α	7,20	8,07	8,96	11,59	-	-	-	-	_	_	_
	400V/3N	PA	A	4,5	4,97	5,49	7,01	10,06	11,11	13,68	14,30	16,74	20,59	26,72
	400V/3N	N Q	A	-	-	-	-	9,66	10,74	13,33	13,96	17,77	21,18	27,39
Расход воды		ALL	I/h	980	1066	1290	1651	2305	2838	3526	3836	4575	5676	7396
Падение давления		0	kPa	21	21	22	24	25	26	34	35	58	61	68
тадение давжения		P A	kPa	60	60	59	55	82	81	69	66	84	115	90
Свободный напор		N Q	kPa	-	-	-	-	160	159	144	140	140	185	158
		0	W/W	3,00	3,00	2,96	2,87	3,23	3,29	3,14	3,26	3,27	3,17	3,15
EER		P A	W/W	2,98	3,00	2,98	2,92	3,28	3,37	3,22	3,35	3,34	3,18	3,15
		N Q	W/W	-	-	-	-	3,28	3,37	3,22	3,35	3,20	3,18	3,16
		0	,.,	3,43	3,43	3,4	3,33	3,74	3,82	3,65	3,71	3,85	3,99	3,94
ESEER		P A		3,5	3,54	3,55	3,48	3,85	3,97	3,8	3,95	3,96	3,94	3,82
		N Q		-	-	-	-	3,66	3,77	3,61	3,75	3,61	3,74	3,62
								3,00	3,11	3,01	5,15	3,01	3,77	3,02
				020H	025H	030H	040H	050H	070H	080H	090H	102H	152H	202H
		0	kW	6,27	7,08	8,49	10,70	14,12	17,44	22,40	24,46	29,31	35,35	45,78
Теплопроизводительность		P A	kW	6,19	6,98	8,37	10,56	13,93	17,20	22,11	24,10	28,69	34,55	44,90
remempenssed, mensioers		N Q	kW	-	-	-	-	13,67	16,92	21,79	23,77	28,56	34,34	44,64
		H	kW	1,98	2,20	2,71	3,28	4,42	5,04	6,50	7,11	8,87	10,45	13,78
Полная потр. мощность		P A	kW	1,98	2,19	2,68	3,23	4,37	4,95	6,36	6,91	8,87	10,67	14,06
полал потр. мощноств		N Q	kW	-	-	-		4,45	5,04	6,46	7,02	9,30	10,72	14,08
	230V/1	H	A	6,61	7,65	9,39	11,83	-	-	-	-	-	-	-
	400V/3N	Н	A	3,80	4,40	5,40	6,80	9,50	10,30	12,90	13,80	17,00	19,00	25,00
Полный потр. ток	230V/1	P A	A	7,38	8,43	10,19	12,64	-	-	-	-	-	-	-
польи потр. ток	400V/3N	PA	A	4,57	5,18	6,20	7,61	10,87	11,72	14,40	15,33	18,18	20,83	27,07
	400V/3N	N Q	A	-	-	-	-	10,48	11,36	14,06	15,00	19,25	21,44	27,76
	100 1/311	H	W/W	3,17	3,22	3,13	3,26	3,20	3,46	3,45	3,44	3,30	3,38	3,32
COP		P A	W/W	3,12	3,19	3,12	3,27	3,19	3,48	3,48	3,49	3,23	3,24	3,19
COI		N Q	W/W	-	-	-	-	3,07	3,36	3,37	3,39	3,07	3,20	3,17
Расход воды		ALL	I/h	1066	1204	1445	1823	2408	2976	3818	4162	4988	6020	7795
Падение давления		Н	kPa	33	37	37	34	34	36	48	65	69	68	78
Падение давления		P A	kPa	58	56	55	51	82	79	65	61	70	100	68
Свободный напор		N Q	kPa				-	159	157	137	132	117	174	141
		o N	kW	5,64	6,14	7,43	9,52	13,29	16,37	20,32	22,06	25,75	31,71	40,57
Холодопроизводительность		P A	kW	5,71	6,21	7,52	9,64	13,47	16,59	20,59	22,4	26,33	32,47	41,41
лолодопроизводительность		N Q	kW	-	-	-	-	13,73	16,87	20,9	22,72	26,47	32,65	41,63
		H	kW	1,90	2,06	2,53	3,33	4,14	5,01	6,51	6,87	8,82	10,48	14,28
Полная потр. мощность		P A	kW	1,92	2,07	2,52	3,30	4,10	4,94	6,39	6,69	8,84	10,72	14,57
The state of the s		N Q	kW	-	-	-	-	4,18	5,02	6,48	6,79	9,23	10,77	14,60
	230V/1	H	A	6,43	7,30	8,17	10,78	-	-	-	-	-	-	-
	400V/3N	Н	A	3,70	4,20	4,70	6,20	8,70	9,70	12,20	12,80	15,60	18,80	24,70
Полный потр. ток	230V/1	P A	A	7,20	8,07	8,96	11,59	-	-	-	-	-	-	-
	400V/3N	P A	A	4,47	4,97	5,49	7,01	10,06	11,11	13,68	14,30	16,73	20,56	26,67
	400V/3N	N Q	A	-	-	-	-	9,66	10,74	13,33	13,96	17,75	21,15	27,33
		H	W/W	2,97	2,98	2,93	2,86	3,21	3,26	3,12	3,21	2,92	3,02	2,84
EER		P A	W/W	2,98	3	2,98	2,92	3,28	3,36	3,22	3,35	2,98	3,03	2,84
		N Q	W/W	-	-	-	-	3,28	3,36	3,22	3,35	2,87	3,03	2,85
Расход воды		ALL	I/h	980	1066	1290	1651	2305	2838	3526	3836	4472	5504	7042
Падение давления		Н	kPa	30	31	32	30	34	35	44	60	55	57	62
дение давления		P A	kPa	60	60	59	55	82	80	69	66	84	115	91
Свободный напор		N Q	kPa	-	-		-	160	158	144	140	140	185	159
		ייוע	KI d					100	150	177	170	170	103	133

Данные в соответствии с нормативом UNI EN 14511-2: 2011

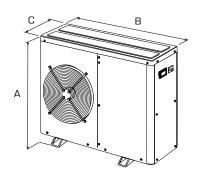
Режим охлажденияТемп, вольт на вусле испарт

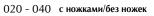
Темп. воды на входе испарителя Темп. воды на выходе испарителя Темп. окружающего воздуха

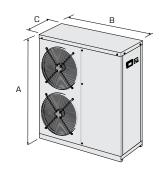
Режим нагрева

 12°C
 Темп. воды на выходе конденсатора
 45°C

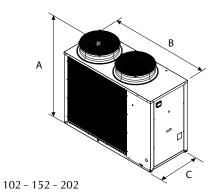
 7°C
 Темп. воды на входе конденсатора
 40°C


 35°C
 Темп. окружающего воздуха
 7°C/


ANL модификация С


45°C Режим охлаждения 40°C Темп. кипения 7°C/6 Темп. окружающего воздуха

5 °C 35 °C


ГАБАРИТЫ - ВЕС			020	025	030	040	050	070	080	090	102	152	202
Высота (А)	° P	ММ	868	868	1000	1000	1252	1252	1252	1252		1450	1450
	A	ММ	868	868	1015	1015	1281	1281	1281	1281	1450		
	Q	ММ	-	-	-	-	1281	1281	1281	1281			
Ширина (B)	° P	MM	900	900	900	900	1124	1124	1124	1124	- 1750 -	1750	1750
	Α	ММ	1124	1124	1124	1124	1165	1165	1165	1165			
	Q	ММ	-	-	-	-	1165	1165	1165	1165			
Глубина (С)	° P	ММ	310/354*	310/354*	310/354*	310/354*	384/428*	384/428*	384/428*	384/428*	750	750	750
	A	ММ	384/428*	384/428*	384/428*	384/428*	550	550	550	550			
	Q	ММ	-	-	-	-	550	550	550	550			
Модификаци	ія только о	хлаждени	e										
Bec	0	КГ	75	75	86	86	120	120	120	156	270	293	329
	P	ΚΓ	77	77	91	91	127	127	163	163	288	314	350
	Α	ΚΓ	99	99	103	103	147	147	147	183	338	364	400
	Q	ΚΓ	-	-	-	-	151	151	187	187			
Модификаци	ія с насосо	м											
Bec	0	КГ	75	75	86	86	120	120	120	156	295	322	358
	P	КГ	77	77	91	91	127	127	163	163	313	343	379
	A	КГ	99	99	103	103	147	147	147	183	363	393	429
	Q	КГ	-	-	-	-	151	151	187	187	423	447	457

050 - 090

ANL290/650 Только охлаждение

R410A

Aerme

participate in the EUROVENT program: LCP/A/P/R. the products are present on the site www.eurovent-certification.com

• МОДИФИКАЦИЯ ТОЛЬКО С ОХЛАЖДЕНИЕМ

МОДИФИКАЦИЯ С НАСОСОМ

Холодильные машины с воздушным охлаждением Холодопроизводительность от 55 до 133 кВт.

VMF

МОДИФИКАЦИЯ С НАСОСОМ И НАКОПИТЕЛЬНЫЙ БАК

Особенности

- 7 типоразмеров
- Только охлаждение
- Хладагент R410A
- Доступны 2 модификации:
- ° Стандартная ANL типоразмеры 580/650
- L C пониженным уровнем шума ANL типоразмеры 290/650
- Высокоэффективные компрессоры спирального типа
- Реле протока входит в стандартную комплектацию
- Датчики низкого и высокого давления входят в стандартную комплектацию
- Режим охлаждения:
 До 43 °C (ANL 290/400).
 До 44 °C (ANL 580/650).

- Высокоэффективные теплообменники.
- Вентиляторы осевого типа с предельно низким уровнем шума.
- Модификация с гидромодулем (только насос / насос с накопительным баком) данные модификации комплектуются также водяным фильтром, реле протока, расширительными баком и электронагревателем защиты от замораживания.
- Модификация с основным и резевным насосами, переключение происходит вручную.
- Электронный контроллер Мори_сонтког.
- Металлический корпус с антикоррозионным покрытием из полиэстера.
- Микропроцессорная система управления:
- контроль температуры воды на входе и возможность контроля температуры воды на выходе;
- Регулировка температуры конденсации при работе в летнем режиме с помощью управляющего сигнала напряжением 0-10 В в зависимости от давления в системе, компенсация заданного значения температуры в зависимости от температуры наружного воздуха (при использовании системы DCPX);
- Интеллектуальная система размораживания для предотвращения падения давления;
- Автоматическое чередование работающих компрессоров и насосов в зависимости от времени наработки;
- Контроль предаварийной/аварийной сигнализации;
- Автоматическая аварийная сигнализация перед полным отключением системы;
- Индикация истории аварийных ситуаций.

Дополнительное оборудование.

- DCPX: Контроллер управления частотой вращения вентилятора, обеспечивающий нормальную работу в режиме охлаждения в диапазоне температур наружного воздуха от менее + 20°C до -10°C.
- DRE: (Устанавливается на заводе изготовителе, поэтому необходимость установки такой системы должна быть отражена в заказе на поставку оборудования). Электронная система, уменьшающая пиковое значение тока на 26% для двухконтурных машин. Доступно только для машин с трехфазной модификацией.
- PR3: Упрощенная панель дистанционного управления, предназначена для управления основными функциями холодильной машины и для регистрации аварийных сигналов. Максимальное расстояние установки панели от машины 150 м, соединение с помощью экранированного кабеля.
- MODU-485A: Интерфейс RS-485 для систем контроля с использованием протокола MODBUS.
- AERWEB300: Обеспечивает дистанционное управление холодильной машиной с обычно-

- го ПК, подсоединенного по локальной сети с помощью стандартного браузера. Доступны
- **AERWEB300-6**: Веб-сервер для контроля и управления максимум 6 машинами в сети RS485:

AERWEB300-18: Веб-сервер для контроля и управления максимум 18 машинами в сети RS485;

АЕRWEB300-6G: Веб-сервер для контроля и

управления максимум 6 машинами в сети RS485 с интегрированным GPRS-модемом; **AERWEB300-18G**: Веб-сервер для контроля и управления максимум 18 машинами в сети RS485 с интегрированным GPRS-модемом.

• MULTICONTROL: Система обеспечивает одновременное управление несколькими холодильными машинами или тепловыми насосами (до 4-х), установленными в общей системе, при оснащении нашим контроллером MODUCONTROL.

Для более полного использования возможностей этой системы предлагается следующее оборудование:

• SPLW: Датчик температуры воды. В большинстве случаев достаточно датчиков, которые поставляются в несмонтированном виде в комплекте каждого чиллера или теплового насоса.

При установке в качестве обычного датчика расхода или на возвратном коллекторе датчик SPLW может использоваться для контроля температуры воды в чиллерах или просто для снятия значений.

- VT: Вибропоглощающие опоры корпуса.
- **GP**: Решетка конденсатора для защиты от возможных повреждений.
- RIF: (Устанавливается на заводе изготовителе и должно быть указано при размещении заказа): Устройство компенсации коэффициента мощности. Подключается параллельно с электродвигателем, позволяет снизить потребляемый ток примерно на 10%.

Совместимость с системой VMF. Дополнительная информация о данной системе приводится в соответствующей документации.

ANL	vers	290	300	340	400	580	620	650
DCPX (модификации с вентиляторами «°» Стандартная)	°/L	58	58	58	58	83	83	83
DCPX (модификации с вентиляторами с высоким статическим давлением «М»)	°/L	62	62	62	63	83	83	83
DRE	°/L	10(x2)	10(x2)	15(x2)	25(x2)	30(x2)	30(x2)	30(x2)
PR3	°/L	•	•	•	•	•	•	•
MODU-485A	°/L	•	•	•	•	•	•	•
AERWEB-300	°/L	•	•	•	•	•	•	•
MULTICONTROL	°/L	•	•	•	•	•	•	•
SPLW	°/L	•	•	•	•	•	•	•
VT (00)	°/L	17	17	17	17	11	11	11
VT (P1-P2-P3-P4)	°/L	13	13	13	17	11	11	11
VT (01-02-03-04)	°/L	13	13	13	13	11	11	11
GP	°/L	GP3	GP3	GP3	GP3	GP2 (x2)	GP2 (x2)	GP2 (x2)
RIF	°/L	32	32	42	42	50	72	51

Выбор модификации

Комбинируя различные опции, можно подобрать такую модель серии ANL, которая наиболее полно отвечает требованиям заказчика.

Код ОПИСАНИЕ

1,2,3 ANL

4,5,6 ТИПОРАЗМЕР

290-300-340-400-580-620-650

7 ОБЛАСТЬ ПРИМЕНЕНИЯ

- ° Стандартная, с температурой воды на выходе выше +4 °C
- Y Низкотемпературная, с температурой жидкости на выходе до -6 °C
- X Расширенный режим EXV, с температурой воды на выходе до +4°C (относительно других температур следует обращаться на завод)

8 МОДЕЛЬ

• Только охлаждение

9 РЕКУПЕРАЦИЯ ТЕПЛА

- Без системы рекуперации
- **D** С частичной рекуперацией (пароохладитель)

10 МОДИФИКАЦИЯ

- ° Стандартная (типоразмеры 580-620-650)
- **L** С пониженным уровнем шума

11 ОРЕБРЕНИЕ КОНДЕНСАТОРА

- Алюминий
- \mathbf{R} Медь
- **\$** Луженая медь
- **V** Окраска

12 ВЕНТИЛЯТОРЫ

- Стандартный
- М Высокое статическое давление
- **J** Инвертор (типоразмеры 580-620-650)
- 13 ЭЛЕКТРОПИТАНИЕ

° 400 B-3+N-50 Гц

14 ПЛАВНЫЙ ПУСК

- Без плавного пуска
- **S** С плавным пуском

15-16 НАКОПИТЕЛЬНЫЙ БАК/НАСОС

- 00 Без накопительного бака или насосов
- 01 Накопительный бак с системным насосом низкого давления
- **02** Накопительный бак с системным насосом низкого давления + резервный насос
- 03 Накопительный бак с системным насосом высокого давления
- **04** Накопительный бак с системным насосом высокого давления + резервный насос
- Р1 Системный насос низкого давления
- Р2 Системный насос низкого давления + резервный насос
- Р3 Системный насос высокого давления
- Р4 Системный насос высокого давления + резервный насос

ВНИМАНИЕ:

- Типоразмеры от 290 до 400 предлагаются только в модификации с пониженным уровнем шума «L».
- Конфигурация «Насос + резервный насос» (02-04-P2-P4) управляется с помощью ручного переключателя.
- Опция «D» несовместима с областью применения «Y».

ANL, ТОЛЬКО ОХЛАЖДЕНИЕ «°»			290	300	340	400	580	620	650			
V	kW	0	-	-	-	-	111	124	133			
Холодопроизводительность	kW	L	55	60	66	76	104	114	121			
	kW	0	-	-	-	-	40,36	47,13	54,40			
Полная потребляемая мощность	kW	L	20,96	22,99	25,19	29,88	43,69	51,23	59,44			
Pagyon Bonti Buggapurana	l/h	0	-	-	-	-	19205	21472	23013			
Расход воды в испарителе	l/h	L	9422	10339	11388	13154	18029	19772	20933			
Общее падение давления	kPa	0	-	-	-	-	81	61	70			
Оощее падение давления	kPa	L	28	33	40	41	72	52	58			
ЭНЕРГОЭФФЕКТИВНОСТЬ												
EER	_W/W	0	-	-	-	-	2,74	2,63	2,44			
LLK	W/W	L	2,60	2,60	2,61	2,54	2,38	2,23	2,03			
ESEER	_W/W	0	-	-	-	_	4,03	3,99	3,72			
	W/W	L	3,83	3,83	3,93	3,83	3,71	3,68	3,52			
ЭЛЕКТРОПИТАНИЕ												
Электропитание	V	°/L	400-3N-50 Hz (с термомагнитными выключателями)									
ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ												
Полный потр. ток	A	0	_	_	_	_	70	82	94			
Полный потр. ток	Α	L	38	41	46	55	74	87	101			
Максимальный ток (FLA)	A	°/L	49	53	58	69	85	99	112			
Пусковой ток (LRA)	Α	°/L	130	131	162	183	262	308	320			
Пусковой ток (плавный пуск)	A	°/L	99	101	123	140	198	230	242			
СТЕПЕНЬ ЗАЩИТЫ МАШИНЫ												
IP	-	°/L	24	24	24	24	24	24	24			
ЗАПРАВКА ХЛАДАГЕНТА												
Тип	-	°/L				R410A						
КОМПРЕССОРЫ (СПИРАЛЬНЫЕ)												
Кол-во компрессоров/контуров	n°/n°	°/L	2/1	2/1	2/1	2/1	2/1	2/1	2/1			
Кол-во нагревателей картера/ном. мощность	n°/W	°/L	2/44	2/44	4/44	4/44	2/75	2/75	2/75			
ГИДРОМОДУЛЬ												
Свободный напор	kPa	0	_	_	_	_	74	80	61			
01-02-P1-P2	kPa	L	123	114	103	93	91	100	87			
Свободный напор	kPa	0	-			_	167	174	155			
03-04-P3-P4	kPa	L	162	153	179	170	183	193	180			
ОСЕВЫЕ ВЕНТИЛЯТОРЫ												
Количество	n°	°/L	4	4	4	6	2	2	2			
Полный расход воздуха	m³/h	°/L	15600	15600	15600	20700	35900	35900	35900			
ИСПАРИТЕЛЬ (Пластинчатый)												
Количество шт.	n°	°/L	1	1	1	1	1	1 2 4/2"	1 2 4/2"			
Гидравлические соединения (VICTAULIC)	Ø	°/L	2"	2"	2"	2"	2-1/2"	2-1/2"	2-1/2"			
АКУСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ	In (+)											
Звуковая мощность	dB(A)	0	- 72	- 72	- 74		82	82	83			
	dB(A)	L	73	73	74	75	77	77	78			
Звуковое давление	dB(A)	0	- 44	- 44	- 42	- 42	50	50	51			
•	dB(A)	L	41	41	42	43	45	45	46			

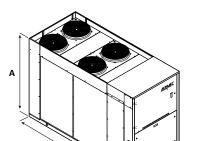
ДАННЫЕ В COOTBETCTВИИ CO CTAH-ДАРТОМ UNI EN14511: 2011

ОХЛАЖДЕНИЕ

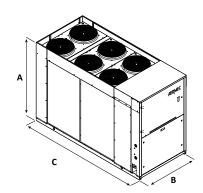
 Темп. воды на входе испарителя
 12 ° C

 Темп. воды на выходе испарителя
 7 ° C

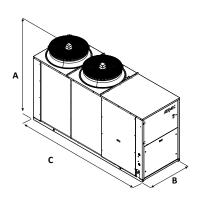
 Темп. наружного воздуха
 35 ° C


ЗВУКОВАЯ МОЩНОСТЬ

Aermec определяет величину акустической мощности на основе измерений, выполненных по стандарту UNI EN ISO 9614-2 в соответствии с требованиями сертификации Eurovent.


ЗВУКОВОЕ ДАВЛЕНИЕ Звуковое давление измерено в свободном акустическом пространстве на расстоянии 10 м от внешней поверхности холодильной машины (по стандарту UNI EN ISO 3744).

ANL°/L 290-300-340


c

ANL°/L 400

ANL°/L 580-620-650

ГАБАРИТЫ/ВЕС				ANL 290	ANL 300	ANL 340	ANL 400	ANL 580	ANL 620	ANL 650
Высота	Α	MM	°/L/C	1605	1605	1605	1605	1875	1875	1875
Ширина	В	ММ	°/L/C	1100	1100	1100	1100	1100	1100	1100
Длина	С	MM	°/L/C	2450	2450	2450	2450	3200	3200	3200
Масса без воды		Кг	°/L	628	636	648	666	854	925	970
Масса транспортировочная		Кг	°/L	646	654	666	685	876	949	994

ANL-C

Компрессорно-конденсаторные блоки Производительность по холоду от 5,7 до 133 кВт

Aermec adheres to the EUROVENT Certification Programme.

The products concerned appear in the EUROVENT Certified Products Guide.

Особенности

- **ANL C:** Компрессорно-конденсаторный блок (без испарителя).
- Высокоэффективные компрессоры спирального типа с низким энергопотреблением
- Датчик перепада давления/реле протока в стандартной комплектации
- Электронное управление (Modu_control)
- Высокоэффективные теплообменники
- Вентиляторные агрегаты аксиального типа с предельно низким уровнем шума
- Металлический корпус антикоррозионным покрытием из полиэстера.

Дополнительное оборудование

- BDX: Поддон для сбора конденсата наружного блока.
- DCPX: Низко температурная система, обеспечивающая работу на охлаждение при наружной температуре менее 20° С до -10° С.
- Стандартные версии с пароохладителем
- **DRE**: Электронная система снижения пикового тока на 30%. Доступна только для трехфазных модификаций.

Устанавливается на заводе изготовителе.

- PR3: Упрощенная панель дистанционного управления. Обеспечивает управления всеми основными функциями (включение / выключение и изменение режима работы, индикация аварийных ситуаций). При при-
- менении экранированного кабеля может быть установлена на расстоянии до 150 м.
- MODU-485A: Интерфейс RS-485 для связи с системой диспетчеризации по протоколу MODBUS.
- AERWEB300: Опция AERWEB обеспечивающая дистанционное управление работой холодильных машин с помощью персонального компьютера и интернет соединения через стандартный браузер; 4 версии:
- AERWEB300-6: Веб-сервер для дистационного управления максимум 6 установок через интерфейс RS485;
- AERWEB300-18: Веб-сервер для дистационного управления максимум 18 установок

- через интерфейс RS485;
- AERWEB300-6G: Веб-сервер для дистационного управления максимум 6 установок через интерфейс RS485 со встроенным модемом GPRS;
- AERWEB300-18G: Веб-сервер для дистационного управления максимум 18 установок через интерфейс RS485 со встроенным модемом GPRS.
- VT: Вибропоглощающие опоры корпуса.
- Совместим с системой управления VMF.
 Пожалуйста, обращайтесь к соответствующей документации

Технические характеристики модификации «С»

Модель ANL C	U.M.	Модиф.	ANL 290	ANL 300	ANL 340	ANL 400	ANL 580	ANL 620	ANL 650
V	(kW)	0	-	-	-	-	115	128	138
Холодопроизводительность	(KVV)	L	55	61	67	77	108	11 <i>7</i>	126
Полная потребляемая	(kW)	0	-	-	-	-	39,6	46,2	53,4
мощность	(KVV)	L	20,7	22,5	24,8	29,4	39,5	47,3	54,9
EER	(W/W)	0	-	-	-	-	2,91	2,77	2,59
EEK	(VV/VV)	L	2,66	2,69	2,69	2,62	2,73	2,48	2,30
Максимальный ток (FLA)	(A)	Все	49	53	58	69	85	99	112
Пусковой ток (LRA)	(A)	Bce	130	131	162	183	262	308	320
Потробидомий ток	(A)	0	-	-	-	-	69,7	81,4	94,0
Потребляемый ток	(A)	L	37,7	40,3	46,2	54,3	73,9	87,3	100,6
2purepag Manuager	dB(A)	0	-	-	-	-	82	82	83
Звуковая мощность	UD(A)	L	73	73	74	75	77	77	78
2011/2002 12012	dD(A)	0	-	-	-	-	50	50	51
Звуковое давление	dB(A)	L	41	41	42	43	45	45	46
Вес нетто	Кг	Все	583	591	603	616	799	848	893

Технические характеристики

				020C	025C	030C	040C	050C	070C	080C	090C	102C	152C	202C
Холодопроизводительность		ALL	kW	5,7	6,0	7,5	9,6	13,7	16,8	20,8	22,5	26,9	33,4	43,7
Полная потр. мощность		0	kW	1,85	2,05	2,5	3,3	4,1	5	6,5	6,8	8,0	10,2	13,5
Полный потр. ток	230V/1	0	Α	9,50	10,00	13,00	16,30	-	-	-	-	-	-	-
Полный потр. ток	400V/3N	0	Α	3,70	4,20	4,70	6,30	8,90	9,90	12,40	13,10	16,0	19,3	25,3
EER		0	W/W	3,08	2,93	3,00	2,91	3,34	3,36	3,20	3,31	3,36	3,27	3,24
Соединения														
Газовая линия			Ø	15,88	15,88	15,88	15,88	22	22	22	28	28	28	28
Жидкостная линия			Ø	9,52	9,52	12,7	12,7	15,88	15,88	15,88	15,88	15,88	15,88	15,88
ОБЩИЕ ХАРАКТЕРИСТИКИ				020	025	030	040	050	070	080	090	102	152	202
Электрические характеристики														
	230V/1	0	Α	16,5	16,5	19,7	23,7	-	-	-	-	-	-	-
	400V/3N	0	Α	6,0	6,0	6,7	8,7	11,3	13,5	16,3	17,3	22,0	26,0	32,0
Максимальный ток (FLA)	230V/1	P A	Α	17,32	17,33	20,54	24,56	-	-	-	-	-	-	-
	400V/3N	P A	Α	6,82	6,83	7,54	9,56	12,65	14,9	17,76	18,79	23,03	27,73	33,95
	400V/3N	N Q	Α	-	-	-	-	12	14	17	18	24	28	34
	230V/1	0	Α	59,5	62,5	83,7	98,7	-	-	-	-	-	-	-
	400V/3N	0	Α	26,5	32,5	35,7	48,7	65,3	75,3	102,3	96,3	76,0	87,0	117,0
Пусковой ток (LRA)	230V/1	P A	Α	60,32	63,33	84,54	99,56	-	-		-	-	-	-
	400V/3N	PA	Α	27,32	33,33	36,54	49,56	66,65	76,7	103,76	97,79	77,03	88,73	118,95
	400V/3N	N Q	Α	-	-	-	-	66,11	76,17	103,25	97,28	77,93	89,12	119,40

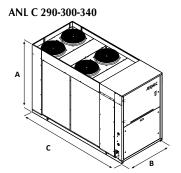
Указанные технические характеристики относятся

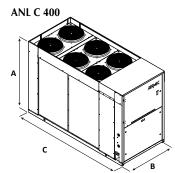
к следующим условиям: **■** ОХЛАЖДЕНИЕ

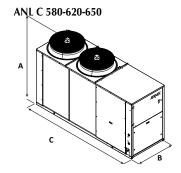
-температура воды на выходе

-температура воды на выходе -температура наружного воздуха -разность температур t =

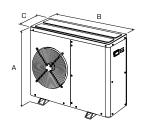
5°C; 35 °C; 5 °C.

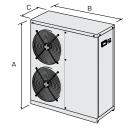

ЗВУКОВАЯ МОЩНОСТЬ

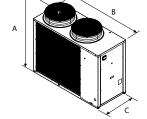

Аегтес определяет величину акустической мощности на основе измерений, выполненных по стандарту UNI EN ISO 9614-2 в соответствии с требованиями сертификации Eurovent.


ЗВУКОВОЕ ДАВЛЕНИЕ

Звуковое давление измерено в свободном акустическом пространстве на расстоянии 10 м. от внешней поверхности холодильной машины (по стандарту UNI EN ISO 3744).


Размеры (мм)





ГАБАРИТЫ/ВЕС				ANL 290	ANL 300	ANL 340	ANL 400	ANL 580	ANL 620	ANL 650
Высота	Α	MM	°/L/C	1605	1605	1605	1605	1875	1875	1875
Ширина	В	MM	°/L/C	1100	1100	1100	1100	1100	1100	1100
Длина	С	MM	°/L/C	2450	2450	2450	2450	3200	3200	3200

 $020 \div 040$ с ножками/без ножек

050 ÷ 090

102 -	152 -	202
-------	-------	-----

ГАБАРИТЫ - ВЕС			020	025	030	040	050	070	080	090	102	152	202
Высота (А)	C	MM	868	868	1000	1000	1252	1252	1252	1252			
Ширина (В)	C	MM	900	900	900	900	1124	1124	1124	1124			
Глубина (С)	C	ММ	310/354*	310/354*	310/354*	310/354*	384/428*	384/428*	384/428*	384/428*			
Модификация толь	ко охлаж	дение											
Bec	0	КГ	75	75	86	86	120	120	120	156	270	293	329

ANLI

Холодильные машины, тепловые насосы с воздушным охлаждением с осевыми вентиляторами

R410A

Теплопроизводительность (при работе на теплые полы) 6,40-33,75 кВт при работе на вентиляторные доводчики 6,18 – 31,70 кВт Холодопроизводительность 5,90-28,80 кВт

Aermec adheres to the EUROVENT Certification Programme.

The products concerned appear in the EUROVENT Certified Products Guide.

- МОДИФИКАЦИИ С ИНВЕРТОРНЫМ УПРАВЛЕНИЕМ КОМПРЕССОРОМ
- СТАНДАРТНОЕ ИСПОЛНЕНИЕ
- МОДИФИКАЦИЯ С ВОДЯНЫМ НАСОСОМ С ИНВЕРТОРНЫМ УПРАВЛЕНИЕМ

Особенности

- Хладагент R410A.
- Регулировка производительности от 35 до 100%.
- Возможность работы с переменным расходом воды (при под ключении доводчиков по схеме с двух ходовыми клапанами).
- Точный контроль температуры воды, даже при малом объеме системы.
- Возможность работы на обогрев в лет нийпериод, для нагрева воды в ГВС (с опцией DCPX для регулирования скорости вращения вентиляторов).
- Расширенный диапазон работы в режиме теплового насоса:
- максимальная температура выходящей воды 55° C,
- максимальная температура наружного воздуха 42° С (с опцией DCPX для регулирования скорости вращения вентиляторов).
- минимальная температура наружного воздуха -15° C.
- Уменьшенные пиковые токи при запуске компрессора.
- Цикл размораживания с использованием впрыска горячего газа/реверсирования цикла.
- Электронный двухходовойвентиль ТРВ ссаморегулировкой от перегрева.

- позволяющий охлаждать теплоноситель до *6° C.
- Высоко эффективный спиральный компрессор с двигателем постоянного от тока спостоянными магнитами, с от возможностью регулировки скорости от вращения.
- Насосный агрегат:
- **ANLI:** стандартная модификация, без насосного агрегата,
- **ANLI P:** с насосным агрегатом без регулирования скорости вращения (вкл/ выкл)
- **ANLI X:** с насосным агрегатом с регулированием скорости вращения, встроенным датчиком давления и микропроцессором, обеспечивающим различные режимы работы:
- постоянное давление (разность междувходным и выходным давлением поддерживается постоянной).
- переменное давление (разность давлений меняется в зависимости от протока).
- Водяной фильтр и дифференциальный датчик давления установлены стандартно во всех модификациях.
- Расширительный бак и защитный клапан (по давлению) устанавливаются на модификациях с насосным агрегатом.
- Все модификации могут работать в

- режиме теплового насоса.
- Все модификации снабжены ЕМС фильтрами.
- Управление:
- Modu_Control панель компании Aermec
 интерфейс с индикатором в 4 знакоместа, шестью кнопками управления и 6 светодиодами индикации
- алгоритм ПИД контроля за температурой выходящей воды
- компенсация «уставноки» (set point) с использованием выносного датчика
- индикация рабочей частоты инвертора
- управление скоростью вращения компрессора
- интеллектуальный адаптивный алгоритм защиты от замерзания,
- контроль температуры конденсации управляющим сигналом 0-10 В, регулирующим спомощью DCPX вращение
- вентиляторов снижение производительности компрессора регулировкой оборотов двигателя в предаварийных ситуациях
- датчики высокого и низкого давления
- автоматичекая аварийная сигнализация перед остановкой системы
- сохранение истории предаварийных ситуаций.

BDX: Поддон для сбора конденсата наружного блока.

DCPX: Система регулирования вращения вентиляторов, обеспечивающая работу на охлаждение при наружной температур е менее $10 \, ^{\circ}$ С (до $^{-15}$ °C) и на нагрев при температуре выше $20 \, ^{\circ}$ С (до $42 \, ^{\circ}$ С) (Обязательна при исполь-

зовании чиллера для подготовки летом горячей воды в ГВС, модификация ANLI 020H)

КR: Электронагреватель защиты от замораживания. Устанавливается на заводе изготовителе.

PR3: Упрощенная панель управления. Обеспечивает управления всеми основными функциями, включая индикацию аварийных ситуаций. При применении экранированного кабеля может быть установлена на расстоянии до 150 м.

VT: Вибропоглощающие опоры корпуса.

Дополнительное оборудование								
Все модели	020	025	070	100				
PR3	V	V	V	V				
MODU-485A	V	V	V	~				
DCPX	51	51	51	53				
BDX	5	5	5	-				
VT	9	9	9	15				
KR	2	2	2	2				

Выбор модификации

Комбинируя различные опции, можно подобрать такую модель холодильной машины, которая наиболее полно отвечает требованиям заказчика.

Кодовые обозначения опций:

Код:

ANLI

Типоразмер:

020, 070, 100, 150

Модель:

Н тепловой насос

Модификация:

стандартная

Р с насосным агрегатом без регулирования скорости

Х – с насосным агрегатом с инверторным управлением

Рекуперация тепла:

⁶ без рекуперации

D - рекуперация

Теплообменники:

° алюминиевые

R медные

S медные, луженные

V алюминиевомедные, с покрытием из эпоксидных смол

Условия эксплуатации:

° стандартные для температуры воды на выходе системы до -6°C

Испаритель:

° по стандарту PED

Электропитание:

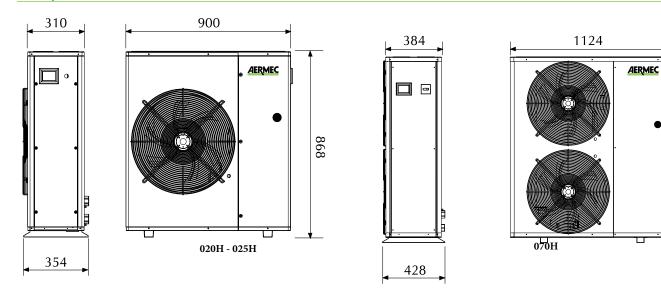
М 230 В, однофазное, 50 Гц (020070)

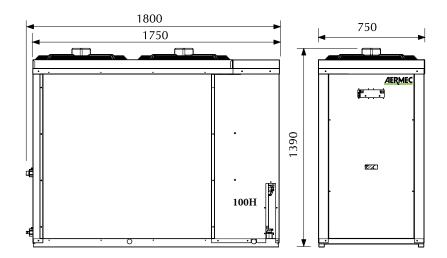
Т 400 В, трехфазное, 50 Гц (100)

Нагрев: вода 40/45 °C воза, 7 °C ст./6 °C м.т. (теплые польі) (фанкойлы) Теплопроизводительность kW HP - HX 6.10 7.21 13.81 31.00 24.95 20.08 Потр. мощность kW HP - HX 2.08 2.33 4.44 11.40 8.34 6.36 Потр. мощность kW HP - HX 2.10 2.35 4.48 11.45 8.35 6.38 Расход воды I/h HP - HX 1063 1257 2415 5452 4291 3454 НР - HX 1049 1241 2376 5332 4179 3362 Падение давления kPa H - HP - HX 25 29 17 59 36 23 Нагрев: вода 30/35 °C воза, 7 °C ст./6 °C м.т. (теплые поль) Теплопроизводительность kW HP - HX 6.40 7.59 14.31 33.01 24.65 20.32 Потр. мощность kW HP - HX 1.72 1.93 3.74 9.85 7.05 5.44 Потр. мощность kW HP - HX 1.74 1.94 3.78 9.86 7.06 5.46 Расход воды I/h HP - HX 1.74 1.94 3.78 9.86 7.06 5.46 Расход воды I/h HP - HX 1.100 1306 2462 5678 4239 3494 Падение давления kPa H - HP - HX 2.8 32 19 66 37 28 Охажжение: вода 12/7 °C воза, 35 °C Тотр. мощность kW HP - HX 1.00 1306 2462 5678 4239 3494 Падение давления kPa H - HP - HX 2.8 32 19 66 37 28 Охажжение: вода 12/7 °C воза, 35 °C Тотр. мощность kW HP - HX 1.00 1306 2462 5678 4239 3494 Падение давления kPa H - HP - HX 2.8 32 19 66 37 28 Охажжение: вода 12/7 °C воза, 35 °C Тотр. мощность kW HP - HX 1.00 110 1104 2504 4948 4120 3445 Расход воды I/h HP - HX 1.023 1117 2544 5061 4219 3480 Падение давления kPa H - HP - HX 2.90 3.07 3.08 2.71 2.91 3.06 СОР (40/45 °C - 7/6 °C) HP - HX 2.90 3.07 3.08 2.71 2.91 3.06 СОР (40/45 °C - 7/6 °C) HP - HX 3,68 3.92 3.79 3.35 3.49 3.72	Модель ANLI		Модиф.	020H	025H		070H	100H [F1	100H [F2]	100H [F3]
Пеплопроизводительность kW HP - HX 6.10 7.21 13.81 31.00 24.95 20.08 Потр. мощность kW HP - HX 6.10 7.21 13.81 31.00 24.30 19.54 Потр. мощность kW HP - HX 2.10 2.33 4.44 11.45 8.35 6.38 Расход воды J/h HP - HX 2.10 2.35 4.48 11.45 8.35 6.38 Расход воды J/h HP - HX 1049 1241 2376 5332 4179 3362 Падение давления кРа H - HP - HX 25 29 17 59 36 23 Натренз вода 30/35°C возд, 7°C ст./6°C мт. (теплые поль)	Нагрев: вода 40/45°C возд. 7	7°С с.т.	/6°С м.т. (теплі	<mark>ые полы</mark>) (фан	койлы)			-		
Потр. мощность kW HP - HX 2.10 2.35 4.44 11.40 8.34 6.36 6.38 Pacxoa воды I/h HP - HX 1049 1241 2376 5332 4179 3360 18-24 14-24 4.44 11.45 8.35 6.38 19.34 14-45 11.45 8.35 6.38 19.34 14-45 11.45 8.35 6.38 19.34 19.3							14.04	31.70	24.95	20.08
Расход воды	Теплопроизводительность	KVV	HP - HX	6.10	7.21		13.81	31.00	24.30	19.54
Расход воды Ил НР - НХ 2.10 2.55 4.48 11.45 8.35 6.38	П	1-347	H	2.08	2.33		4.44	11.40	8.34	6.36
Расход воды I/h HP - HX 1049 1241 2376 5332 4179 3362 Падение давления RPa H - HP - HX 25 29 17 59 36 23 Нагрев: вода 30/35 °C возд, 7°С ст./6°С мт. (теплые полы) Теплопроизводительность kW H 6.48 7.66 14.54 33.75 25.34 20.87 Теплопроизводительность kW HP - HX 6,40 7.59 14,31 33,01 24,65 20.32 Потр. мощность kW HP - HX 1,74 1.94 3,78 9,86 7,06 5,46 Расход воды I/h HP - HX 1100 1306 2462 5678 4239 3494 Охлаждение: вода 12/7 °C возд, 35° С Колодопроизводительность kW HP - HX 5,95 6,50 14.79 29.43 24.53 20.23 Охлаждение: вода 12/7 °C возд, 35° С Колодопроизводительность kW HP - HX 5,95 6,50	потр. мощность	KVV	HP - HX	2.10	2.35		4.48	11.45	8.35	6.38
Падение давления кра H - HP - HX 25 29 17 59 36 23 Нагрев: вода 30/35 °C возд, 7 °C с.т./6 °C м.т. (теплые полы) Теплопроизводительность кW HP - HX 6,40 7.59 14,31 33,01 24,65 20,32 10 14,31 32,32 10 14,35 12 14,35 1	D	1/1		1063	1257		2415	5452	4291	3454
Натрев: вода 30/35 °C возд, 7°C с.т./6° С мт. (теплые полы) Теплопроизводительность kW H 6.48 7.66 14.54 33.75 25.34 20.87 14.31 33.01 24.65 20.32 20.3	Расход воды	I/n	HP - HX	1049	1241		2376	5332	4179	3362
Теплопроизводительность kW H 6.48 7.66 14.54 33.75 25.34 20.87 Потр. мощность kW HP-HX 6,40 7.59 14,31 33,01 24,65 20,32 Потр. мощность kW HP-HX 1,74 1.94 3,78 9,86 7,06 5,44 Расход воды I/h HP-HX 1114 1318 2502 5805 4359 3590 Падение давления kPa H - HP - HX 1100 1306 2462 5678 4239 3494 Охлаждение: вода 12/7°С возд, 35°С КР Н - HP - HX 28 32 19 66 37 28 Охлаждение: вода 12/7°С возд, 35°С КР Н - HP - HX 5.88 6.42 14.56 28.77 23.95 20.03 Потр. мощность kW HP - HX 2.94 4.44 11.79 29.43 24.53 20.23 <	Падение давления	kPa	H - HP - HX	25	29		17	59	36	23
Генлопроизводительность kW HP - HX 6,40 7.59 14,31 33,01 24,65 20,32 Потр. мощность kW H 1,72 1.93 3,74 9,85 7,05 5,44 Расход воды I/h HP-HX 1,74 1.94 3,78 9,86 7,06 5,46 НР-НХ 1,10 1318 2502 5805 4359 3590 Падение давления kPa H - HP - HX 1100 1306 2462 5678 4239 3494 Охлаждение: вода 12/7°С возд, 35°С Колодопроизводительность kW HP - HX 5.95 6.50 14.79 29.43 24.53 20.23 Потр. мощность kW HP - HX 5.95 6.50 14.79 29.43 24.53 20.23 Расход воды I/h HP - HX 2.14 2.44 4.48 11.82 8.31 5.80 Расход воды I/h HP - HX 1023 1117 2544 5	Нагрев: вода 30/35°C возд. 7	7°С с.т.	/6°С м.т. (теплі	ые полы)						
Потр. мощность kW HP - HX 6,40 7.59 14,31 33,01 24,65 20,32 HP - HX 1,72 1.93 3,74 9,85 7,05 5,44 HP - HX 1,74 1.94 3,78 9,86 7,06 5,46 FP - MP - HX 1,74 1.94 1.94 3,78 9,86 7,06 5,46 FP - MP - HX 1110 1.318 2.502 5805 4.359 3.590 FP - MP - HX 1100 1.306 2.462 5.678 4.239 3.494 FP - HX 2.8 3.2 1.9 6.6 3.7 2.8 FP - MP - HX 2.8 3.2 1.9 6.6 3.7 2.8 FP - MP - HX 2.8 5.88 6.42 14.56 2.8.77 2.3.95 20.03 1.00	T	1-347		6.48	7.66		14.54	33.75	25.34	20.87
Потр. мощность kW HP -HX 1,74 1.94 3,78 9,86 7,06 5,46 Расход воды I/h H 1114 1318 2502 5805 4359 3590 Падение давления kPa H - HP - HX 1100 1306 2462 5678 4239 3494 Охлаждение: вода 12/7°С возд, 35°С Кранне вода 12/7°С возд, 35°С Холодопроизводительность kW H 5.88 6.42 14.56 28.77 23.95 20.03 Потр. мощность kW HP - HX 5.95 6.50 14.79 29.43 24.53 20.23 Потр. мощность kW HP - HX 2.14 2.44 4.48 11.82 8.31 5.80 Расход воды I/h H 1011 1104 2504 4948 4120 3445 Показатели эффективности HP - HX 2.97 3.14 3.16 2.78 2.99 3.16 Показатели эффективности HP - HX	<u>Геплопроизводительность</u>	KVV	HP - HX	6,40	7.59		14,31	33,01	24,65	20,32
Расход воды		1 747	Н	1,72	1.93		3,74	9,85	7,05	5,44
Расход воды	потр. мощность	KVV	HP -HX	1,74	1.94		3,78	9,86	7,06	5,46
Падение давления kPa HP - HX 1100 1306 2462 56/8 4259 3494 Охлаждение: вода 12/7°С возд, 35°С Колодопроизводительность kW H 5.88 6.42 14.56 28.77 23.95 20.03 Потр. мощность kW HP - HX 5.95 6.50 14.79 29.43 24.53 20.23 Потр. мощность kW HP - HX 2.14 2.42 4.44 11.73 8.14 6.00 Расход воды I/h H - HX 1011 1104 2504 4948 4120 3445 Падение давления kPa H - HP - HX 23 29 19 50 30 24 Показатели эффективности НР - HX 2,90 3.07 3.08 2.71 2.91 3.06 СОР (30/35 °C - 7/6 °C) HP - HX 3,68 3.92 3.79 3.35 3.49 3.72	D	1/1		1114	1318		2502	5805	4359	3590
Охлаждение: вода 12/7°С возд, 35°С Холодопроизводительность kW H 5.88 6.42 14.56 28.77 23.95 20.03 Потр. мощность kW HP - HX 5.95 6.50 14.79 29.43 24.53 20.23 Потр. мощность kW H - HX 2.12 2.42 4.44 11.73 8.14 6.00 Расход воды l/h H - HX 1011 1104 2504 4948 4120 3445 Падение давления kPa H - HP - HX 23 29 19 50 30 24 Показатели эффективности НР - HX 2,97 3.14 3.16 2.78 2.99 3.16 СОР (30/35 °C - 7/6 °C) HP - HX 2,90 3.07 3.08 2.71 2.91 3.06 HP - HX 3,68 3.92 3.79 3.35 3.49 3.72	Расход воды	I/n	HP - HX	1100	1306		2462	5678	4239	3494
Холодопроизводительность kW H 5.88 6.42 14.56 28.77 23.95 20.03 Потр. мощность kW HP - HX 5.95 6.50 14.79 29.43 24.53 20.23 Потр. мощность kW H 2.12 2.42 4.44 11.73 8.14 6.00 Расход воды l/h H 1011 1104 2504 4948 4120 3445 Падение давления kPa H - HP - HX 23 29 19 50 30 24 Показатели эффективности HP - HX 2,97 3.14 3.16 2.78 2.99 3.16 COP (30/35 °C - 7/6 °C) HP - HX 2,90 3.07 3.08 2.71 2.91 3.06 HP - HX 3,68 3.92 3.79 3.35 3.49 3.72	Падение давления	kPa	H - HP - HX	28	32		19	66	37	28
Колодопроизводительность kW HP - HX 5.95 6.50 14.79 29.43 24.53 20.23 Потр. мощность kW H 2.12 2.42 4.44 11.73 8.14 6.00 Расход воды l/h H 1011 1104 2504 4948 4120 3445 Падение давления kPa H - HY - HX 23 29 19 50 30 24 Показатели эффективности HP - HX 2,97 3.14 3.16 2.78 2.99 3.16 COP (30/35 °C - 7/6 °C) HP - HX 2,90 3.07 3.08 2.71 2.91 3.06 COP (30/35 °C - 7/6 °C) HP - HX 3,68 3.92 3.79 3.35 3.49 3.72	Охлаждение: вода 12/7°С во	озд, 35°	,C							
Потр. мощность kW	V	1 747	Н	5.88	6.42		14.56	28.77	23.95	20.03
Потр. мощность kW HP - HX 2.14 2.44 4.48 11.82 8.31 5.80 Pacxoд воды I/h HP - HX 1011 1104 2504 4948 4120 3445 HP - HX 1023 1117 2544 5061 4219 3480 Падение давления kPa H - HP - HX 23 29 19 50 30 24 Показатели эффективности СОР (40/45 °C - 7/6 °C) HP - HX 2,90 3.07 3.08 2.71 2.91 3.06 COP (30/35 °C - 7/6 °C) HP - HX 3,68 3.92 3.79 3.35 3.49 3.72	холодопроизводительность	KVV	HP - HX	5.95	6.50		14.79	29.43	24.53	20.23
Расход воды		1 747	Н	2.12	2.42		4.44	11.73	8.14	6.00
Расход воды I/h HP - HX 1023 1117 2544 5061 4219 3480 Падение давления kPa H - HP - HX 23 29 19 50 30 24 Показатели эффективности СОР (40/45 °C - 7/6 °C) H 2,97 3.14 3.16 2.78 2.99 3.16 HP - HX 2,90 3.07 3.08 2.71 2.91 3.06 COP (30/35 °C - 7/6 °C) H 3,77 3.98 3.88 3.43 3.59 3.84 HP - HX 3,68 3.92 3.79 3.35 3.49 3.72	потр. мощность	KVV	HP - HX	2.14	2.44		4.48	11.82	8.31	5.80
Падение давления кРа H - HX 1025 1117 2544 5061 4219 3480 Показатели эффективности СОР (40/45 °C - 7/6 °C) НР - HX 2,97 3.14 3.16 2.78 2.99 3.16 СОР (30/35 °C - 7/6 °C) НР - HX 2,90 3.07 3.08 2.71 2.91 3.06 СОР (30/35 °C - 7/6 °C) НР - HX 3,68 3.92 3.79 3.35 3.49 3.72	D	1/1.	H	1011	1104		2504	4948	4120	3445
Показатели эффективности СОР (40/45 °C - 7/6 °C) HP - HX 2,97 3.14 3.16 2.78 2.99 3.16 HP - HX 2,90 3.07 3.08 2.71 2.91 3.06 COP (30/35 °C - 7/6 °C) H 3,77 3.98 3.88 3.43 3.59 3.84 HP - HX 3,68 3.92 3.79 3.35 3.49 3.72		1/ N	HP - HX	1023	1117		2544	5061	4219	3480
COP (40/45 °C - 7/6 °C) H 2,97 3.14 3.16 2.78 2.99 3.16 HP - HX 2,90 3.07 3.08 2.71 2.91 3.06 COP (30/35 °C - 7/6 °C) H 3,77 3.98 3.88 3.43 3.59 3.84 HP - HX 3,68 3.92 3.79 3.35 3.49 3.72	Падение давления	kPa	H - HP - HX	23	29		19	50	30	24
COP (40/45 °C - 7/6 °C) H 2,97 3.14 3.16 2.78 2.99 3.16 HP - HX 2,90 3.07 3.08 2.71 2.91 3.06 COP (30/35 °C - 7/6 °C) H 3,77 3.98 3.88 3.43 3.59 3.84 HP - HX 3,68 3.92 3.79 3.35 3.49 3.72										
COP (40/45 °C - 7/6 °C) HP - HX 2,90 3.07 3.08 2.71 2.91 3.06 COP (30/35 °C - 7/6 °C) H 3,77 3.98 3.88 3.43 3.59 3.84 HP - HX 3,68 3.92 3.79 3.35 3.49 3.72	Показатели эффективности	1								
COP (30/35 °C - 7/6 °C) HP - HX 2,90 3.07 3.08 2.71 2.91 3.06 H 3,77 3.98 3.88 3.43 3.59 3.84 HP - HX 3,68 3.92 3.79 3.35 3.49 3.72	COD (40/45.00 5/6.00)		Н		2,97	3.14	3.16	2.78	2.99 3	3.16
COP (30/35 °C - 7/6 °C) HP - HX 3,68 3.92 3.79 3.35 3.49 3.72	COP (40/45 °C - 7/6 °C)		HP -	HX 2,90	3.07	3.08	2.71	2.91	3.06	_
TP - TA 3,08 3.92 3.79 3.33 3.49 3.72	COD (20/25 0C - 5/2 0C)		Н		3,77	3.98	3.88	3.43	3.59 3	3.84
II 277 277 220 245 224	COP (30/35 °C - 7/6 °C)		HP -	HX 3,68	3.92	3.79	3.35	3.49	3.72	
FED (10/70C 25 00) H 2,// 2.00 3.28 2.45 2.94 3.34	EED (12/50C 250C)		Н		2,77	2.66	3.28	2.45	2.94 3	3.34
EER (12/7 °C - 35 °C) HP - HX 2,78 2.66 3.30 2.49 2.95 3.49	EER (12/7°C - 35°C)		HP -	HX 2,78	2.66	3.30	2.49	2.95	3.49	
ESEER 3,82 3.82 4.60 4.33 4.33 4.33	ESEER				3,82	3.82	4.60	4.33	4.33	1.33

Электрические характеристик	И								
Электропитание				230V ~ 50 H	<u> 1z 230V ~ 50 H</u>	z 230V ~ 50 Hz	7	400V - 3N ~ 50	Hz
Потребляемый ток (40/45 °C	- 7/6 A	H		10.1	11.3	19.1	15.7	11.5	8.8
°C) .	A	HP - HX	10.6-10.6	11.8	20.5-19.8	17.1	12.9	10.2	
Потребляемый ток (30/35 °C	- 7/6 A	Н		8.4	9.4	16.0	13.4	9.6	7.4
°C) .	A	HP - HX	8.9-8.9	9.9	17.4-16.7	14.8	11.0	8.8	
Потребляемый ток (12/7°C	- 35 A	Н		10.3	10.9	18.9	16.3	11.3	8.3
°C) '	A	HP - HX	10.8-10.8	11.4	20.3-19.6	17.7	12.7	9.7	
· /FI A\	A	Н		14.0	14.0	24.5	21.0	21.0	21.0
Максимальный ток (FLA)	A	HP - HX	14.5-14.5	14.5	25.9-25.2	22.4	22.4	22.4	
- (IDA)	A	Н		20.0	20.0	25.0	30.0	30.0	30.0
Пиковый ток (LRA)	A	HP - HX	20.5-20.5	20.5	26.4-25.7	31.4-30.7	31.4-30.7	31.4-30.7	

Компрессор	тип		Спиральный	Спиральный	Ротационный	Спиральный
Колво/конт.	n°/n°	H-HP-HX	1/1	1/1	1/1	1/1
Вентиляторы				A	ксиальный	
Количество	n°	H-HP-HX	1	1	2	2
Расход воздуха	m³/h	H-HP-HX	2500	3500	7200	13200
Испаритель				Пл	астинчатый	
Количество	n°	H-HP-HX	1	1	1	1
Трубопр. соед. (вхвых	(in-out) Ø	H-HP-HX	1"¼	1"¼	1"1⁄4	1"¼
Звуковые характерис	СТИКИ					
Акустическая мощно	ОСТЬ	dBA	61.0	68.0	69.0	76.0
Звуковое давление		dBA	29.0	37.0	37.0	44.0


Гидравлический контур						
Потр. мощность насоса	kW	HP - HX	0.1-0.1	0.1-0.1	0.27-0.13	0.75
Потр. ток насоса	A	HP - HX	0.5-0.5	0.5-0.5	1.4-0.7	1.4
Эффективное давление *	kPa	HP - HX	57-57	52-52	82-72	92


Технические характеристики согласно EN14511:2004

Акустическая мощность: Основные измерения в соответствии с ISO 9614 2

Звуковое давление: Звуковое давление измерено в свободном пространстве, на расстоянии 10 м, при коэффициенте направленности, равном 2 (в соответствии со стандартом ISO 3744)

^{*} Эффективное давление в холодном режиме
[F1] = максимальная производительность
[F2] = производительность в соответствии со стандартом NF414
[F3] = производительность согласно местным стандартам

ANLI			020H	025H	070H	100H
	Н	kg	70	70	134	293
Масса сухая	HP - HX kg	72	72	141	308	

290/650 **R410A**

Холодильные машины и тепловые насосы с воздушным охлаждением и вентиляторами с прямым приводом. Производительность от 5,7 до 38 кВт

Variable Multi Flow®

VMF

participates in the EUROVENT Program: LCP/A/P/R The products of interest can be found on the website www.eurovent-certification.com

- ТЕПЛОВЫЕ НАСОСЫ ОПТИМИЗИРОВАНЫ ДЛЯ ОТОПЛЕНИЯ: ПРОИЗВОДСТВО ГОРЯЧЕЙ ВОДЫ ДО 60 ° С
- РАБОТА НА ОБОГРЕВ ПРИ НАРУЖНОЙ ТЕМ-ПЕРАТУРЕ ОТ -15°С ДО 42°С;
- ИНТЕРФЕЙС С СИСТЕМОЙ УПРАВЛЕНИЯ
- СТАНДАРТНЫЙ КОНТРОЛЬ ИСПАРЕНИЯ И **КОНДЕНСАЦИИ**
- ИНВЕРТОРНЫЕ ВЕНТИЛЯТОРЫ С ПРЯМЫМ ПРИВОДОМ

- ДОСТУПНЫЕ МОДИФИКАЦИИ:
 - -СТАНДАРНАЯ
 - -C HACOCOM
 - -С НАСОСОМ И НАКОПОТИЛЬНЫМ БАКОМ
- ПРОИЗВОДСТВО ГОРЯЧЕЙ ВОДЫ ДЛЯ ГВС - РАБОТА ПРИ НАРУЖНОЙ ТЕМПЕРАТУРЕ OT -15°C ΔO 42°

Особенности

- 10 типоразмеров.
- Модели, работающие только на охлаждение и тепловые насосы «Н»
- Поставляется заправленный хладагентом R410A.
- Доступные модификации:
- «°» Стандартная
- «Р» С насосом, расширительным баком и водяным
- «А» С насосом, расширительным баком, водяным фильтром и накопительным баком.
- Все молели имеют низко температурные молификации, рассчитанные на охлаждение воды до -6°C (см. выбор модификации).
- Горизонтальный или вертикальный выброс воздуха регулируется для всех типоразмеров.

- Пластиковый кожух вентилятора конденсатора для типоразмеров от 050 до 090.
- Стальной воздухораспределительный кожух вентилятора конденсатора для всех остальных типоразмеров
- Высокоэффективные компрессоры спирального
- Электронагреватель картера компрессора стандартно во всех модификациях.
- Водяной фильтр и реле протока стандартно во всех молификациях.
- Вентиляторы с прямым приводом с инверторными двигателями в соответствии со стандартом EU
 - Благодаря постоянному регулированию скорости

- вращения вентиляторов, обеспечивается работа на охлаждение при наружной температуре менее -10°C и на нагрев при температуре выше +42°C
- Электронная система управления с функциями задержки запуска компрессоров и оптимизированным циклом разморозки.
- Высокоэффективный теплообменник пластинчатого типа.
- Поддон для сбора конденсата стандартно для моделей с тепловым насосом «Н».
- Электронагреватель защиты от замораживания пластинчатого теплообменника «KR» стандартно для моделей с тепловым насосом «Н».
- Электронагреватель защиты от замораживания стандартно для накопительного бака.

Дополнительное оборудование

- AERSET: Устройство управления и контроля, которое позволяет изменить уставку температуры воды для чиллеров во время получения импульсного сигнала 0-10В по протоколу MODBUS.
 - Требует наличия дополнительно интерфейсов: AER485 или MODU-485A.
- MODU-485A: Интерфейс RS-485 для связи с системой лиспетчеризации по протоколу MODBUS. (Требуется для производства горячей воды).
- DRE: Электронная система, уменьшающая пиковые значение тока приблизительно на 30%. Устанавливается на заводе-изготовителе.
- KR: Электронагреватель защиты от замораживания пластинчатого теплообменника. (Доступно для модификаций работающих на охлаждение). Устанавливается на заводе-изготовителе.
- PR3: Упрощенная панель дистанционного управления. Обеспечивает управление всеми основными функциями и индикацию аварийных ситуаций. При применении экранированного кабеля может быть установлена на расстоянии до 30м.
- VT: вибропоглощающие опоры корпуса.
- СІРА: Пренум из стального гальванизированного листа для установки на конденсатор. Облегчает подключение к каналам воздуховода.

- **GPCL:** Защитная решетка. Защищает внешнюю поверхность конденсатора от повреждения.
- KR B4/B5/B6: Электрический нагреватель основания для защиты от образования льда (Доступно только для модификаций с тепловым насосом).
- **BSKW:** Внешний электрический нагреватель различных мощностей с однофазным и трехфазным питанием:
- BS4KW230M (4kW, 230V/1/50Hz)
- BS6KW230M (6kW, 230V/1/50Hz)

- BS6KW400T (6kW, 400V/3/50Hz) BS9KW400T (9kW, 400V/3/50Hz) **MULTICONTROL:** Позволяет одновременно управлять несколькими холодильными машинами или тепловыми насосами (до 4), устанавливается с контроллером MODUCONTROL в одной гидравлической системе.
 - Для более полного использования возможностей этой системы предлагается следующее оборудование:
- SPLW: Датчик воды системы. В большинстве случаев достаточно датчиков, которые поставляются в не смонтированном виде в комплекте каждого чиллера или теплового насоса. При установке в качестве обычного датчика расхода или на возвратном коллекторе датчик SPLW может

- использоваться для контроля температуры воды в чиллерах или просто для снятия значений.
- **SDHW:** Датчик воды системы ГВС. Используется на накопительном баке для контроля температуры производимой горячей воды.
- AERWEB300: опция AERWEB обеспечивающая дистанционное управление работой холодильных машин с помощью персонального компьютера и интернет соединения через стандартный браузер;
- AERWEB300-6: веб-сервер для дистационного управления максимум 6 установок через интерфейс RS485;
- AERWEB300-18: веб-сервер для дистационного управления максимум 18 установок через интерфейс RS485
- AERWEB300-6G: веб-сервер для дистационного управления максимум 6 установок через интерфейс RS485 со встроенным модемом GPRS;
- AERWEB300-18G: веб-сервер для дистационного управления максимум 18 установок через интерфейс RS485 со встроенным модемом GPRS.
- СОВМЕСТИМ с системой управления VMF. Пожалуйста, обращайтесь к соответствующей документации.

Выбор модификации

Комбинируя различные опции, можно подобрать такую модель серии ANL, которая наиболее полно отвечает требованиям

Кодовые обозначения опций:

Код:

 CL

Типоразмер:

025, 030, 040, 050, 070, 080, 090, 100, 150, 200

Модель:

- о Только охлаждение
- Н Тепловой насос

Исполнение

- °- Стандартное
- L С пониженным уровнем шума

Модификация:

- ° Стандартная
- Р С насосом
- А С насосом и накопительным баком

Рекуперация тепла:

- ° Без рекуперации
- D С пароохладителем

(Доступно для модификаций работающих на охлаждение для типоразмеров от 050 до 200)

Оребрение теплообменника:

- ° Алюминивое
- R Медное
- S Луженая медь
- V Алюминий с защитным эпоксидным покрытием

Область применения:

- ° Стандартная
- Z Низкотемпературная с охлаждением жидкости от +4°C до 0°C
- Y Низкотемпературная с охлаждением жидкости от 0°C до -6°C

Испаритель:

- ° Стандартный
- С Компрессорно-конденсаторный агрегат

Электропитание:

- ° трехфазное с нейтралью, 400 В, 50 Гц
- М однофазное, 230 В, 50 Гц (только для типоразмеров 025 до 040) 3 трехфазное, 230 В, 50 Гц (только для типоразмеров 090 и 200, относительно других типоразмеров следует обращаться на завод)

Модель «Н» с тепловым насосомпот

- Рекуперации тепла «D» невозможно комбинировать с:
 - Вентиль терморегулирующий «Z» - «Y»
- невозможно комбинировать с:
 Вентиль терморегулирующий «Z» «Y»
- Компрессорно-конденсаторный агрегат «С»
 Пароохладителем D
- Компрессорно-конденсаторный агрегат «С»
- С пониженным уровнем шума «L»

модификации со встроенным баком - накопителем НЕ МОГУТ быть применены для производства ГВС.

CL		- :	25	:	30	4	10		50	7	70	8	80	Ġ	90	1	00	1	50	2	00
"°" ТОЛЬКО ОХЛАЖДЕНИЕ "Н" ТЕПЛОВОЙ НАСОС	Электропитание	o	Н	0	Н	0	Н	٥	Н	0	Н	0	Н	0	Н	o	Н	0	Н	o	Н
™ KRB4	Bce	-	~	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
∞ KRB5	Bce	-	-	-	-	-	V	-	~	-	~	-	~	-	V	-	-	-	-	-	-
™ KRB6	Bce	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-	~	-	~
BS4KW230M	Все	-	~	-	~	-	V	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BS6KW230M	Все	-	~	-	~	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BS6KW400T	3N~ 400V 50Hz	-	~	-	~	-	~	-	V	-	V	-	~	-	~	-	~	-	V	-	~
BS9KW400T	3N~ 400V 50Hz	-	~	-	~	-	~	-	~	-	~	-	~	-	~	-	~	-	V	-	~
™ KR2	Все	V	Std	V	Std	~	Std	V	Std	~	Std	~	Std	~	Std	V	Std	~	Std	~	Std
PR3	Все	V	V	V	~	~	V	V	~	~	~	V	~	V	V	V	~	V	V	V	~
VT	°/H/P/HP	9	9	9	9	9	9	9	9	9	9	9	9	9	9	15	15	15	15	15	15
V 1	A / HA	15A	15A	15A	15A	15A	15A	15A	15A	15A	15A	15A	15A	15A	15A	15	15	15	15	15	15
∞MODU - 485A	Bce	~	~	V	~	~	~	~	~	~	~	~	~	~	V	~	~	V	~	~	~
⊕CLPA	Все	1	1	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3
49 DRE	3N~ 400V 50Hz	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5 (x2)					
	1~ 230V 50Hz	V	<u> </u>	~	V	V	<u> </u>	-	-	-	-	-	-	-		-	-	-	-	-	
# GPCL	Bce	1	1	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3
MULTICONTROL	Bce	V	V	V	~	V	V	~	~	~	~	~	~	V	V	~	~	V	~	V	~
SPLW	Все	V	~	V	~	V	~	V	~	~	V	V	~	~	~	V	~	~	~	V	~
SDHW	Все	V	~	V	~	V	~	V	~	~	~	V	~	~	~	V	~	~	~	V	~
AERWEB300	Все	V	~	V	~	V	~	V	~	~	~	V	~	~	~	V	~	~	~	V	~

Электропитание однофазное 230В 50Гц доступно только для типоразмеров 025 - 030 - 040

- (1) Устанавливается только на заводе-изготовителе
- (2) Необходимая опция для производства горячей воды (3) Невозможно комбинировать с GPCL, только для типоразмеров 025 до 090
- (4) DRE для электропитания 1 ~ 230V 50Hz / 3 ~ 230V 50Hz

~	Доступно
Std	Стандартная установка
-	Не доступно

Технические характе	еристи	КИ											
Модель «°» ТОЛЬКО ОХЛАЖДЕНИЕ	Ед,	Модиф.	Электропитание	025	030	040	050	070	080	090	100	150	200
Холодопроизводительность	kW -	P/A	Bce Bce	5,82 5,87	7,11 7,18	8,80 8,89	12,65 12,80	16,28 16,47	18,30 18,51	20,14	26,16 24,34	32,86 31,94	40,34 38,31
Полная потребляемая мощность	kW -	0	Bce	2,09	2,55	3,47	4,03	5,24	6,45	6,53	8,47	10,78	13,83
Расход воды	I/h	P/A	Bce Bce	2,12 1009	2,57 1234	3,47 1525	4,02 2191	5,19 2820	6,38 3170	6,45 3487	8,53 4538	10,98 5701	13,97 7009
Общее падение давления	kPa	All °	Bce	19,00	26,00	25,00	27,00	29,00	30,00	29,00	45,00	53,00	72,00
Свободный напор насоса	kPa	P/A	Все	58,26	49,17	49,63	79,21	74,42	71,35	70,62	82,63	131,17	121,75
<u>ЭНЕРГОЭФФЕКТИВНОСТЬ</u>		0	Bce	2,79	2,79	2,54	3,13	3,11	2,84	3,08	3,09	3,05	2,92
EER	W/W -	P/A	Bce	2,77	2,80	2,56	3,18	3,17	2,90	3,16	2,85	2,91	2,74
ESEER	W/W	0	Bce	3,23	3,27	2,98	3,73	3,63	3,29	3,56	4,64	4,55	4,51
ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИІ	КИ	P/A	Bce	3,21	3,28	3,01	3,79	3,71	3,37	3,64	4,68	4,60	4,53
<u> </u>		0	230V/1/50Hz	10,14	12,99	16,91	-	-	-	-	-	-	-
Полный потр. ток	Α -		400V/3N/50Hz 230V/1/50Hz	4,80 10,91	5,10 13,77	7,50 17,71	8,53 -	10,23	12,03	12,89	16,72 -	19,76 -	25,36
		P/A	400V/3N/50Hz	5,57	5,88	8,30	9,88	11,64	13,47	14,36	17,85	21,55	27,33
		0	230V/1/50Hz	21,6	24,6	24,7	12.60	15.20	16.00	- 20.20	- 27.26	- 20.76	40,76
Максимальный ток(FLA)	Α -	D/A	400V/3N/50Hz 230V/1/50Hz	11,1 22,57	11,6 25,57	12,6 25,67	13,68	15,38	16,98 -	20,38	27,36	30,76	- 40,70
		P/A	400V/3N/50Hz	12,07	12,57	13,57	15,63	17,33	18,93	22,33	29,32	33,84	43,84
		0	230V/1/50Hz 400V/3N/50Hz	66,6 37,6	87,6 40,6	<u>117,6</u> 71,6	77,18	77,18	77,18	105,18	90,86	92,56	125,56
Пусковой ток (LRA)	Α -	P/A	230V/1/50Hz	67,57	88,57	118,57	-	_	-		-	-	_
Модель «Н» ТЕПЛОВОЙ НАСОС	U.M.	Version	400V/3N/50Hz Power supply	38,57 025	41,57 030	72,57 040	79,13 050	79,13 070	79,13 080	107,13 090	92,82 100	95,64 150	128,64 200
Модель «п» Тепловой пасос Холодопроизводительность	kW -	Н	400V/3N/50Hz	6,39	8,35	10,34	11,90	13,96	15,49	18,92	23,82	31,21	37,43
лолодопроизводительность	KVV "	HP/HA	400V/3N/50Hz	6,44	8,42	10,44	12,03	14,12	15,67	19,14	24,34	31,94	38,31
Полная потребляемая мощность	kW -	HP/HA	400V/3N/50Hz 400V/3N/50Hz	2,54 2,57	2,98 2,99	3,56 3,55	3,93 3,94	4,60 4,58	5,37 5,34	6,52 6,46	7,85 7,91	10,43 10,70	13,73 13,93
Расход воды	l/h	Н	Все	1105	1442	1787	2055	2413	2678	3275	4126	5394	6484
Общее падение давления Свободный напор насоса	kPa kPa	H HP/HA	Bce Bce	13,00 63,81	12,00 63,08	13,00 60,09	11,00 98,55	15,00 92,73	17,00 87,84	26,00 75,11	34,00 99,30	22,00 157,54	43,00 144,36
Теплопроизводительность	kW -	Н	Bce	7,92	9,79	12,52	14,47	15,95	18,61	21,06	27,98	34,92	44,00
теплопроизводительность		HP/HA H	Bce Bce	7,85 2,24	9,70 2,86	12,39 3,45	14,30 3,88	15,76 4,52	18,39 5,24	20,81 6,32	27,41 7,79	34,14 10,12	43,03 13,84
Полная потр. мощность	kW -	HP/HA	Bce	2,25	2,85	3,42	3,86	4,32	5,17	6,22	7,79	10,12	14,03
Расход воды	I/h	HP/HA	Bce	1406	1740	2113	2476	2727	3181	3597	4772	5971	7346
Общее падение давления Свободный напор насоса	kPa kPa	H HP/HA	Bce Bce	19,00 57,50	16,00 58,79	18,00 53,54	17,00 92,80	21,00 88,35	26,00 79,25	34,00 69,77	49,00 81,15	30,00 143,90	62,00 116,78
ЭНЕРГОЭФФЕКТИВНОСТЬ													
EER	W/W	H HP/HA	Bce Bce	2,51 2,51	2,80 2,82	2,91 2,94	3,03	3,04	2,89 2,94	2,90 2,96	3,04	2,99 2,99	2,73 2,75
COP	W/W -	Н	Все	3,53	3,42	3,63	3,72	3,53	3,55	3,33	3,59	3,45	3,18
		<u>HP/HA</u> H	Bce Bce	3,48 2,92	3,40 3,29	3,62 3,25	3,71 3,41	3,52 3,42	3,56 3,25	3,35 3,27	3,50 4,54	3,29 4,42	3,07 4,21
ESEER	W/W -	HP/HA	Bce	2,91	3,31	3,29	3,44	3,47	3,31	3,38	4,55	4,45	4,21
ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИ	КИ		230V/1/50Hz	12,7	15,4	16							
Полика того том (оможность)	4	Н	400V/3N/50Hz	5,50	6,30	6,70	7,68	8,38	9,77	13,42	14,34	21,25	26,61
Полный потр. ток (охлаждение)	Α -	HP/HA	230V/1/50Hz	13,48	16,20	16,81	-	- 0.75	- 11.16	11.07	15.42	-	20.51
			400V/3N/50Hz 230V/1/50Hz	6,28 11,8	7,10 14,3	7,51 15,66	9,02	9,75	11,16	14,87	15,43	23,00	28,51
Полный потр. ток (нагрев)	Α -	Н	400V/3N/50Hz	5,50	6,20	6,50	7,64	8,18	9,34	12,71	14,34	19,45	26,49
rioruisiir no ipi rok (nai pes)	, ,	HP/HA	230V/1/50Hz 400V/3N/50Hz	12,59 6,29	15,11 7,01	16,49 7,33	9,02	9,58	10,78	14,19	15,50	21,29	28,53
		Н	230V/1/50Hz	18,80	23,70	24,00	-		-		-	-	_
Максимальный ток (FLA)	Α -		400V/3N/50Hz 230V/1/50Hz	11,01 19,77	11,96 24,67	11,92 24,97	13,50	14,68	15,15 -	20,38	27,00	30,30	40,76
		HP/HA	400V/3N/50Hz	11,98	12,93	12,89	15,45	16,63	17,10	22,33	28,96	33,38	43,84
		Н	230V/1/50Hz	86,10	95,51	96,14	-	-	-	-	-	-	-
Пусковой ток (LRA)	Α -		400V/3N/50Hz 230V/1/50Hz	44,60 87,07	44,60 96,48	<u>57,18</u> 97,11	64,18	74,18 -	94,18	105,18	77,68 -	109,33	125,56
		HP/HA	400V/3N/50Hz	45,57	45,57	58,15	66,13	76,13	96,13	107,13	79,64	112,41	128,64
Модель «L» НИЗКОШУМНАЯ	Units	Version	Power supply	025	030	040	050	070	080	090	100	150	200
Холодопроизводительность	kW -	L	400V/3N/50Hz	5,65	6,90	8,53	12,14	15,63	17,57	18,54	24,09	31,56	37,27
		LP/LA I	400V/3N/50Hz 400V/3N/50Hz	5,70 2,13	6,97 2,60	8,62 3,51	12,29 4,21	15,82 5,42	17,78 6,55	18,75 7,26	24,60 9,46	32,35 11,08	38,20 14,11
Полная потребляемая мощность	kW -	LP/LA	400V/3N/50Hz	2,17	2,62	3,51	4,21	5,37	6,49	7,20	9,53	11,29	14,26
Расход воды	l/h	All	Bce	979	1197	1479	2104	2707	3043	3208	4175	5473	6472
Общее падение давления Свободный напор насоса	kPa kPa	LP/LA	Bce Bce	18,23 59,40	24,76 50,36	23,57 51,88	25,16 81,94	26,64 77,50	27,60 74,65	24,46 77,20	38,49 91,23	48,96 137,40	66,38 129,38
ЭНЕРГОЭФФЕКТИВНОСТЬ													
EER	W/W	LP/LA	400V/3N/50Hz 400V/3N/50Hz	2,65 2,63	2,66 2,66	2,43 2,46	2,88 2,92	2,89 2,94	2,68 2,74	2,55 2,61	2,55 2,58	2,85 2,87	2,64 2,68
ESEER	W/W -	L	400V/3N/50Hz	3,13	3,16	2,89	3,48	3,43	3,13	3,00	3,89	4,31	4,14
ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИІ		LP/LA	400V/3N/50Hz	3,11	3,17	2,92	3,53	3,49	3,18	3,06	3,91	4,34	4,15
	·-· •	L	230V/1/50Hz	9,93	12,79	16,83	-	_	-	-	-	-	_
Полный потр. ток	Α -		400V/3N/50Hz	4,31	4,70	6,90	8,97	11,27	12,64	13,64	18,54	20,20	26,10
		LP/LA	230V/1/50Hz 400V/3N/50Hz	10,70 5,08	13,57 5,48	17,63 7,70	10,31	12,67	14,07	15,09	19,64	21,96	28,00
		L	230V/1/50Hz	21,6	24,6	24,7	-			-	-	-	
Максимальный ток (FLA)	Α -		400V/3N/50Hz 230V/1/50Hz	11,1 22,57	11,6 25,57	12,6 25,67	13,68	15,38	16,98 -	20,38	27,36	30,76	40,76
		LP/LA	400V/3N/50Hz	12,07	12,57	13,57	15,63	17,33	18,93	22,33	29,32	33,84	43,84
		L	230V/1/50Hz 400V/3N/50Hz	66,6 37,6	87,6 40,6	117,6 71,6	- 77,18	- 77,18	- 77,18	105,18	90,86	92,56	125,56
Пусковой ток (LRA)	Α -	LP/LA	230V/1/50Hz	67,57	88,57	118,57	-						-
		LI /L/\	400V/3N/50Hz	38,57	41,57	72,57	79,13	79,13	79,13	107,13	92,82	95,64	128,64

⁻ Данные в соответствии с UNI EN 14511-2011 - Все данные указаны при номинальном располагаемом статическом напоре вентиляторов

ОХЛАЖДЕНИЕ
Темп. воды на выходе из испарителя 7°C
Темп. воды на входе испарителя 12°C
Темп. наружного воздуха 35°C

НАГРЕВТемп. воды на входе конденсатора Темп. воды на выходе конденсатора Темп. наружного воздуха

40 °C
45 °C
7°C по сухому /6°С по мокрому

ОБЩИЕ ХАРАКТЕРИСТИКИ	Eд.	Модиф.	Электропитание	025	030	040	050	070	080	090	100	150	200
СПИРАЛЬНЫЙ КОМПРЕССОР													
Кол-во компрессоров/контуров	n°/n°	Bce	Bce	1/1	1/1	1/1	1/1	1/1	1/1	1/1	2/1	2/1	2 / 1
ПЛАСТИНЧАТЫЙ ИСПАРИТЕЛЬ													
Количество	n°	Bce	Bce	1	1	1	1	1	1	1	1	1	1
Гидравлические соединения (VICTAULIC)	Ø	Bce	Bce	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4	1" 1/4
ПРЯМОПРИВОДНЫЙ ВЕНТИЛЯТОР - СО ВСТІ	РОЕННЫ	м инверто	РНЫМ МОТОРОМ										
Количество	n°			1	1	1	1	1	1	1	2	2	2
		0	Bce	4000	4000	4000	6500	6500	6500	7500	10000	12000	12000
Расход воздуха	m3/h	Н	Bce	4000	4000	6500	6500	6500	6500	7500	10000	12000	16000
		L	Bce	3000	3000	3000	4000	4000	5000	5000	6000	8500	8500
		0	Bce	0,34	0,34	0,34	0,62	0,62	0,62	0,83	0,95	1,76	1,76
Потр. мощность	kW	Н	Bce	0,34	0,34	0,62	0,62	0,62	0,62	0,83	0,95	1,76	2,72
•		L		0,16	0,16	0,16	0.24	0.24	0.36	0.36	0.33	0,83	0,83
Номинальный свободный статический напор	Pa	Bce	Bce	50	50	50	80	80	80	80	80	100	100
Максимальный свободный статический напор	Pa	Bce	Bce	300	300	300	400	400	400	400	400	400	400
НАКОПИТЕЛЬНЫЙ БАК													
Объем		Α	Bce	50	100	100	100	100	100	100	100	100	100
РАСШИРИТЕЛЬНЫЙ БАК													
Кол-во/Объем	n°/l	P/A	Bce	1/2	1/5	1/5	1/5	1/5	1/5	1/5	1/8	1/8	1/8
АКУСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ													
		0		78,3	78,3	78,3	73,0	73,0	73,0	75,7	74,4	78,7	78,7
Излучаемая звуковая мощность	dB(A)	Н	Bce	78,3	78,3	73,0	73,0	73,0	73,0	75,7	74,4	78,7	80,4
, , , , ,		L		70.6	70.6	70.6	68.9	68.9	68.9	68.9	65.6	71.7	71.7
		0		46,3	46.3	46.3	41.0	41.0	41.0	43.7	42.4	46.7	46,7
Излучаемое звуковое давление	dB(A)	Н	Bce	46,3	46,3	41,0	41,0	41,0	41,0	43,7	42,4	46,7	48,4
, , , , , , , , , , , , , , , , , , , ,		L	-	38.6	38.6	38.6	36.9	36,9	36,9	36,9	33,6	39,7	39,7
		0		78.3	78.3	78.3	77.9	77.9	77,9	80.9	78.0	83.4	83.4
Звуковая мощность на выходе из вентилятора	dB(A)	Н	- All	78,3	78,3	77.9	77.9	77,9	77,9	80,9	78,0	83,4	85,1
		Ĺ		70.7	70.7	70.7	67.8	67.8	67.8	67.8	63.1	72,6	72.6
		0		46,3	46.3	46.3	45.9	45.9	45,9	48.9	46.5	51.9	51.9
Звуковое давление на выходе из вентилятора	dB(A)	Н	All	46,3	46,3	45,9	45,9	45,9	45,9	48,9	46,5	51,9	53,6
,	٠, ٠	L	-	38,7	38,7	38,7	35,8	35,8	35,8	35,8	31,6	41,1	41,1

- Данные в соответствии с UNI EN 14511-2011 - Все данные указаны при номинальном располагаемом статическом напоре вентиляторов

 ОХЛАЖДЕНИЕ

 Темп. воды на выходе из испарителя
 7°C

 1смп. воды на входе испарителя
 12°C

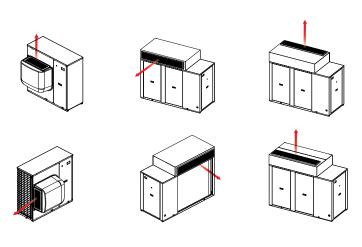
 Темп. наружного воздуха
 35°C

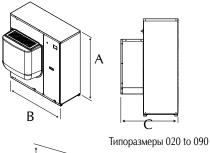
ЗВУКОВАЯ МОЩНОСТЬ ЗВУКОВАЯ МОЩНОСТЬ измерена в соответ-ствии с нормативом UNI EN ISO 9614-1, в соответствии с требованиями eurovent.

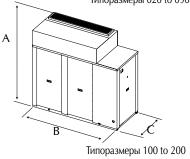
НАГРЕВТемп. воды на входе конденсатора Темп. воды на выходе конденсатора Темп. наружного воздуха

40 °C
45 °C
7°C по сухому /6°C по мокрому

ЗВУКОВОЕ ДАВЛЕНИЕ
ЗВУКОВОЕ
ДЕЛЕНИЕ
ЗВУКОВОЕ
ЗВУКОВОЕ
ДЕЛЕНИЕ
ЗВУКОВОЕ
ЗВУКО


Размеры (мм)


ГАБАРИТЫ/ВЕС	без упаков	ки - "°	" ТОЛЬН	(Ο ΟΧΛ	АЖДЕН І	ие/"L" Н	ІИЗКОЦ	JYMHAS	1			
	Модиф.	Eд.	025	030	040	050	070	080	090	100	150	200
Высота (А)	Все	mm	1028	1281	1281	1281	1281	1281	1281	1674	1674	1674
Ширина (В)	° - P	mm	1005	1006	1006	1160	1160	1160	1160	1897	1897	1897
ширина (в)	A	mm	1366	1458	1458	1610	1610	1610	1610	1897	1897	1897
<u>Д</u> лина (C)	Bce	mm	702	754	754	798	798	798	798	801	801	801
	0	Кг	127	160	160	208	210	210	212	469	471	475
Масса нетто	P	Кг	133	166	166	217	225	225	221	482	487	492
	A	Кг	157	201	201	252	260	260	256	532	537	542


ГАБАРИТЫ/ВЕС без упаковки - «Н» ТЕПЛОВОЙ НАСОС

I/ (D/ (I / II DI/ DEC	ocs finance			000711								
	Модиф.	Eд.	025	030	040	050	070	080	090	100	150	200
Высота (А)	Tutte	mm	1028	1028	1281	1281	1281	1281	1281	1674	1674	1674
III. m. u.o. (D)	H - HP	mm	1005	1005	1160	1160	1160	1160	1160	1897	1897	1897
Ширина (В)	HA	mm	1366	1366	1610	1610	1610	1610	1610	1897	1897	1897
Длина (С)	Tutte	mm	702	702	798	798	798	798	798	801	801	801
	Н	Кг	142	142	229	229	240	240	234	504	527	515
Масса нетто	HP	Кг	148	148	239	239	250	250	243	517	543	531
	HA	Кг	172	172	274	274	284	284	279	567	593	581

Возможные варианты ориентации кожуха вентилятора (можно изменять на месте монтажа)

Cod.: SCLUY.01 / 1210

NRL 280/700 R410A

Холодильные машины с воздушным охлаждением и осевыми вентиляторами с холодопроизводительностью от 53 до 150 кВт

CERTIFIED PERFORMANCE

Aermec adheres to the EUROVENT Certification Programme.

The products concerned appear in the EUROVENT Certified Products Guide.

- КОМПАКТНАЯ КОНСТРУКЦИЯ
- ДВА ХОЛОДИЛЬНЫХ КОНТУРА
- КОМПАКТНАЯ КОНСТРУКЦИЯ С ПОНИЖЕННЫМ УРОВНЕМ ШУМА
- ВЫСОКОЭФФЕКТИВНЫЕ МОДИФИКАЦИИ
- ВЫСОКОЭФФЕКТИВНЫЕ МОДИФИКАЦИИ С ПОНИЖЕННЫМ УРОВНЕМ ШУМА
- МОДИФИКАЦИИ
- С ЦИРКУЛЯЦИОНЫМ НАСОСОМ
- С ЦИРКУЛЯЦИОННЫМ НАСОСОМ И НАКОПИТЕЛЬНЫМ БАКОМ

Характеристики

- 9 типоразмеров.
- Хладагент R410A.
- 2 холодильных контура.
- Высокая эффективность даже при неполной тепловой нагрузке.
- Конструкция теплообменников, оптимизированная для применения хладагента R410A, обладающего прекрасными свойствами теплообмена.
- Высокоэффективные компрессоры спирального типа.
- Аксиальные вентиляторы с пониженным уровнем шума
- Высоко прочный корпус с антикоррозионным покрытием из полиэстера.
- Работа в режиме охлаждения при температуре наружного воздуха до 46 °C
- Модификации и опции:
- ° компактная модификация (500-700)
- L компактная модификация с пониженным уровнем шума (280-700)
- А повышенной эффективности (500-700)

- Е повышенной эффективности с пониженным
- уровнем шума (280-700)
- (°) стандартный механический терморегулирующий вентиль для охлаждения
- воды до +4°C; – (Y) механический терморегулирующий вентиль для охлаждения воды до -6°C;
- (X) электронный терморегулирующий
- вентиль для охлаждения воды до -6 °С; - возможность применения вентиляторов увеличенного размера;
- Модификации с насосным агрегатом и накопительным баком, оборудованные водяным фильтром, расходомером воды, расширительным резервуаром, устройством для заливки воды и электронагревателем защиты от замораживания.
- Микропроцессорная система управления:
- контроль температуры воды на входе и возможность контроля температуры воды на выходе;

- регулировка температуры конденсации при работе в лет нем режиме с помощью управляющего сигнала напряжением 0 - 10 В в зависимости от давления в системе;
- компенсация заданного значения температуры в зависимости от температуры наружного воздуха (-при исполь зо ва нии систе мы DCPX)
- чередование работающих компрессоров и насосов в зависимости от времени наработки;
- снижение производительности в случае предаварийных ситуаций;
- датчики высокого и низкого давления;
- автоматическая аварийная сигнализация перед полным отключением системы;
- индикация сообщений на 4 языках;
- индикация предыстории аварийных ситуаций.

Дополнительное оборудование

AER485: Интерфейс (стандарта RS485) для обмена данными через сеть телеметрического управления системами здания по протоколу MODBUS.

VT: Комплект виброизолирующих элементов крепления холодильной машины; четыре опоры крепятся на стальном основании корпуса холодильной машины.

DCPX: Система, обеспечивающая работу холодильной машины при температуре ниже 10°C (до -10°C). Она состоит из электронной карты, регулирующей скорость вращения вентиляторов в зависимости от давления конденсации, регистрируемого датчиком давления, и поддерживает давление на необходимом уровне.

DRE: Электронная система, уменьшающая пиковые значения тока. Устанавливается на заводеоизготовителе.

GP: Решетка, защищающая внешний теплообменник от повреждений.

PGS: Программатор ежедневного/еженедельного расписания работы. Используется для задания двух моментов времени на каждые

сутки (то есть, двух циклов включения/отключения). Для каждого дня недели можно задать различные программы работы.

RIF: Система перефазировки напряжения, подключаемая к электромотору и снижающая пусковой ток. Устанавливается на заводео изготовителе, поэтому необходимость установки такой системы должна быть отражена в заказе на поставку оборудования.

в заказе на поставку оборудования. **AERWEB30:** Система, обеспечивающая дистанционное управление работой холодильных машин с персонального компьютера с последовательным подключением. При использовании дополнительного модуля AERMODEM управление может осуществляться по телефонной сети, а при использовании модуля AERMODEMGSM с мобильного телефона стандарта GSM. Система AERWEB позволяет управлять работой до 9 холодильных машин, каждая из которых должна быть оборудована дополнительными устройствами AER485 или AER485P2.

ТР2: Датчик низкого давления, служащий для индикации давления в системе всасывания

компрессора (требуется по одному датчику на каждый контур).

ТР3: Датчик высокого давления, служащий для индикации давления в системе нагнетания компрессора (требуется по одному датчику на каждый контур).

DUALCHILLER: Упрощенная система управления, предназначенная для включения/выключения двух холодильных машин, входящих в единую систему и оборудованных устройствами AERMEC GR3. Управление происходит так, как если бы имелась только одна холодильная машина.

MULTICHILLER: Система управления, предназначенная для включения/выключения отдельных холодильных машин, входящих в единую систему и подключенных параллельно. При этом поддерживается постоянный расход воды во всех испарителях.

TRX1: Металлическая заглушка, применяемая вместо пластиковой (стандартной) и закрывающая отверстия в накопительном баке, предназначенные для установки электронагревательного элемента.

		Co	вместимо	сть допол	нительног	о оборудова	ния			
Модель NRL	Vers.	280	300	330	350	500	550	600	650	700
AER485	Bce	~	~	~	~	V	~	~	V	V
DUALCHILLER	Bce	~	~	~	~	V	~	~	~	V
MULTICHILLER	Все	~	~	~	V	V	~	<u> </u>	<u> </u>	V
PGS	Bce	~	~	~	~	V	~	~	~	V
AERWEB30	Все	~	~	~	~	V	~	~	~	V
TRX1	Все	~	·	<u> </u>	~	~	~	<u> </u>	<u> </u>	V
V/T (00 P4 P2 P2 P4)	° - L	17	17	17	17	13	13	13	13	13
VT (00-P1-P2-P3-P4)	A - E	17	17	17	17	13	13	13	13	22
N/T (01 02 02 04 05 06 07 00 00 10)	° - L	13	13	13	13	10	10	10	10	10
VT (01-02-03-04-05-06-07-08-09-10)	A - E	13	13	13	13	10	10	10	10	22
DCDV	0	-	-	-	-	64	64	64	64	64
OCPX :	L	56	56	56	56	стандарт	стандарт	стандарт	стандарт	стандарт
	Α	-	-	-	-	64	64	64	64	64
	E	56	56	57	57	стандарт	стандарт	стандарт	стандарт	стандарт
DCDV I	0	-	-	-	-	64	64	64	64	64
DCPX модиф. с увелич. вент.	L	60	60	60	61	стандарт	стандарт	стандарт	стандарт	стандарт
	Α	-	-	-	-	64	64	64	64	65
	E	61	61	61	61	стандарт	стандарт	стандарт	стандарт	стандарт
DRE	Все	281	301	331	351	501	551	601	651	701
C.D.	° - L	3	3	3	3	2 (x2)	2 (x2)	2 (x2)	2 (x2)	2 (x2)
GP	A - E	3	4	4	4	2 (x2)	2 (x2)	2 (x2)	2 (x2)	2 (x3)
TP3	° - L	~	~	~	~	стандарт	стандарт	стандарт	стандарт	стандарт
11 3	A - E	V	~	~	~	стандарт	стандарт	стандарт	стандарт	стандарт
RIF	Bce	50	50	50	51	52	52	53	53	53
PRM1	Все	V	~	~	~	~	V	~	V	V

Примечание: Для типоразмеров 280, 300, 330, 350 доступны модификации только (L-E)

Выбор модификации

Комбинируя различные опции, можно подобрать такую модель серии NRL, которая наиболее полно отвечает требованиям заказчика.

Кодовые обозначения опций:

Код:

NIRI

Типоразмер:

028, 030, 033, 035, 050, 055, 060, 065, 070

Компрессоры:

° стандартные, для хладагента R410A

Терморегулирующий вентиль:

- ° стандартный, механический, для охлаждения воды до +4 °C
- Y механический, для охлаждения воды до -6 °C
- X электронный, для охлаждения воды до -6 °C

Молель:

только охлаждение

Система рекуперации тепла:

- ° без системы рекуперации
- D с пароохладителем
- Т с полной рекуперацией

Модификация:

- ° компактная
- L компактная, с пониженным уровнем шума
- А повышенной эффективности
- Е повышенной эффективности, с пониженным уровнем шума

Теплообменники:

- ° алюминиевые
- R медные
- S медные, луженные
- V алюминиевомедные, с покрытием из эпоксидных смол

Вентиляторы:

- ° стандартные
- М увеличенного размера (280-700)
- Ј с инверторным управлением (500-700)

Электропитание:

- 400 В, трехфазное, 50 Гц, с термомагнитными размыкателями цепи
- 1 230 В, трехфазное, 50 Гц, с термомагнитными размыкателями цепи
- 2 500 В, трехфазное, 50 Гц, с термомагнитными размыкателями цепи (для подбора DCPX свяжитесь с представителем AERMEC)

Накопительный бак:

- 00 без бака
- 01 с баком и одним насосом умеренного давления
- 02 с баком и резервным насосом умеренного давления
- 03 с баком и одним насосом высокого давления
- 04 с баком и резервным насосом высокого давления
- 05 с баком, имеющим отверстия для крепления электронагревателя, и одним насосом умеренного давления
- 06 с баком, имеющим отверстия для крепления электронагревателя, и резервным насосом умеренного давления
- 07 с баком, имеющим отверстия для крепления электронагревателя, и одним насосом высокого давления
- 08 с баком, имеющим отверстия для крепления электронагревателя, и резервным насосом высокого давления
- 09 с двойным контуром циркуляции воды
- 10 с двойным контуром циркуляции воды и встроенным электронагревателем
- Р1 без бака, с насосом умеренного давления
- Р2 без бака, с насосом умеренного давления и резервным насосом
- РЗ без бака, с насосом высокого давления
- Р4 без бака, с насосом высокого давления и резервным насосом

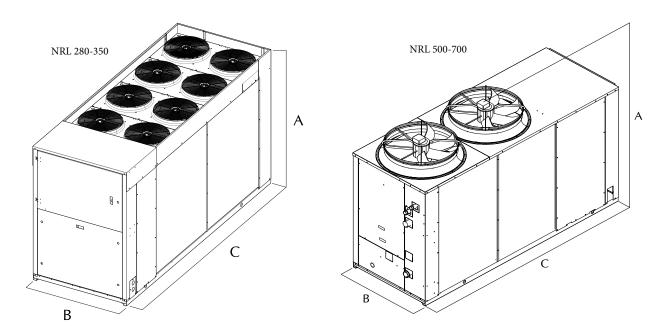
Внимание:

- опции D-T-C не совместимы с опцией Y
- стандартные модификации обозначаются символом °

- типоразмер 0350 не поставляется с электропитанием 500В трехфазное 50 Гц Пример кодового обозначения **NRL**0350°°**L**°°°**0**0 - это холодильная машина NRL типоразмера 0350 с механическим

тример кодового обозначения **(NRLDS) от 12-3 по** - это холодильная машина (NRL ипгоразмера озото с механическим терморегулирующим вентилем, работающая только на охлаждение, компактная, с пониженным уровнем шума, без системы рекуперации тепла, с алюминиевым теплообменником конденсатора, стандартными вентиляторами, электропитанием от трехфазного напряжения 400 В, 50 Гц, без накопительного бака и насоса

Технические характеристики


Модель NRL		Модиф.	280	300	330	350	500	550	600	650	700
		0	-	-	-	-	97	103	126	137	156
V	(1.7.7)	L	53	63	68	81	87	93	113	127	144
Холодопроизводительность	(kW)	A	- 57	65	- 74	83	98	104 95	129 117	143 129	163 150
		<u>E</u>	- 3/	-	-	-	34.8	38.2	45.9	53.9	60.0
		L	20.3	22.6	26.1	28.4	38.5	42.5	50.9	57.6	64.8
Полная потр. мощность	(kW)	A	-	-	-	-	30.2	34.2	40.1	44.6	52.3
•		E	16.8	19.4	21.8	25.1	33.1	36.7	44.3	51.6	56.6
		0		-	-	-	16680	17720	21670	23560	26830
		<u>L</u>	9120	10840	11700	13930	14960	16000	19440	21840	24770
Расход воды	(l/h)	A E	- 0000	- 11100	12720	14200	16860	17890	22190	24600	28040
		<u>E</u>	9800	11180	12730	14280	15480 53	16340 59	20120 64	22190 61	25800 74
		L	51	46	54	55	43	48	51	52	63
Падение давления	(kPa)	A	-	-	-	-	44	49	54	60	68
		E	43	39	35	42	37	41	44	49	58
		0		-	-	-	2.79	2.70	2.75	2.54	2.60
		L	2.61	2.79	2.61	2.85	2.26	2.19	2.22	2.20	2.22
EER	(W/W)	A	- 2.20	- 2.25	- 2.20	- 2.21	3.25	3.04	3.22	3.21	3.12
		E	3.39	3.35	3.39	3.31	2.72 3.43	2.59 3.32	2.64	2.50 3.58	2.65 3.67
ECEED		T.	3.16	3.37	3.15	3.45	3.40	3.30	3.87	3.56	3.65
ESEER	(W/W)	A	- 3.10	-	-	-	3.83	3.59	4.28	4.26	4.15
		E	3.94	3.89	3.94	3.84	3.78	3.55	4.15	4.13	4.02
Электропитание							й 50Гц с тер				
		0		-	-	-	63	67	81	88	100
		L	36	40	44	51	70	75	90	99	111
Потребляемый ток	(A)	<u>A</u>	- 20	- 24	-	-	55	60	71	77	90
Margura A ==(FLA)	(^)	E Page	30	34	37	45	60	64	78	89	97
Максимальный ток(FLA)	(A)	Bce	46	53	58	63	76	81	100	112	122
Пиковый ток (LRA)	(A)	Bce	155	184	190	200	214	220	232	243	261
Компрессоры тип		Bce				-	Спиральнь	ій			
		0		-	-	-	3/2	3/2	4/2	4/2	4/2
		L	2/2	2/2	2/2	2/2	3/2	3/2	4/2	4/2	4/2
Компрессоры/контуры		A	_	-	-	-	3/2	3/2	4/2	4/2	4/2
		E	2/2	2/2	2/2	2/2	3/2	3/2	4/2	4/2	4/2
Вентиляторы тип							Аксиальны				
_		0		-	-	-	34600	34600	34600	34600	33600
Расход воздуха	(m^3/h)	<u>L</u>	14200	14200	14200	20200	28400	28700	27700	29400	28600
		A	22000	22000	27000	27000	34100	34100	32600	32600	50000
		<u>E</u>	22000	22000	27000	-	21100	22200	21800	22800	32500 2
Вентиляторы	(NO.)	L	4	4	4	6	2	2	2	2	2
ВЕПИЛИТОРЫ	(NO.)	A	-	-	-	-	2	2	2	2	3
Испарители		E	6	6	8	8	2	2	2	2	3
итспарители		E Bce	6	6	8	8	2 Пластинча		2		3
			6	6	8	8		 ГЫЙ РМ	2		
Трубопроводные соединения Диаметр трубопр.соединения		Все	2"½	2"½	2"½	2"½	Пластинча	-	2"½		3 2"½
Трубопроводные соединения Диаметр трубопр.соединения Мощность насоса	(kW)	Bce Bce	2"1/2			2"1/2	Пластинчат С хомутс	ГЫЙ РМ 2"½	2"1/2	2	
Трубопроводные соединения Диаметр трубопр.соединения Мощность насоса насоса умеренного давления	(kW)	Bce Bce Bce		2"1/2	2"1/2		Пластинчат С хомуто 2"½	 ГЫЙ РМ		2"½	2"½
Трубопроводные соединения Диаметр трубопр.соединения Мощность насоса насоса умеренного давления Мощность насоса насоса высокого давления	(kW)	Bce Bce Bce	2"1/2	2"1/2	2"1/2	2"1/2	Пластинчат С хомуто 2"½	ГЫЙ РМ 2"½	2"1/2	2"½	2"½
Трубопроводные соединения Диаметр трубопр.соединения Мощность насоса насоса умеренного давления Мощность насоса насоса высокого давления Потребляемый ток насоса умеренного давления		Bce Bce Bce	2"½	2"½ 1.1	2"½ 1.1	2"½ 1.1	Пластинчат С хомуто 2"½ 1.5	гый 2"½ 1.5	2"½ 1.5	2 2"½ 1.5	2"½ 1.8
Трубопроводные соединения Диаметр трубопр.соединения Мощность насоса насоса умеренного давления Мощность насоса насоса высокого давления Потребляемый ток насоса умеренного давления Потребляемый ток	(kW)	Bce Bce Bce Bce Bce	2"½ 1.1 1.5	2"½ 1.1 1.5	2"½ 1.1 1.5	2"½ 1.1 1.5	Пластинчат С хомутс 2"½ 1.5	тый ом 2"½ 1.5	2"½ 1.5 3.0	2 2"½ 1.5 3.0	2"½ 1.8 3.0
Трубопроводные соединения Диаметр трубопр.соединения Мощность насоса насоса умеренного давления Мощность насоса насоса высокого давления Потребляемый ток насоса умеренного давления Потребляемый ток	(kW)	Bce Bce Bce Bce Bce Bce	2"½ 1.1 1.5 2.7 3.6	2°½ 1.1 1.5 2.7 3.6	2"½ 1.1 1.5 2.7 3.6	2°½ 1.1 1.5 2.7 3.6	Пластинча: С хомуто 2"1/2 1.5 1.8 3.6 5.0	тый 2°½ 1.5 1.8 3.6 5.0	2°½ 1.5 3.0 3.6 5.7	2"½ 1.5 3.0 3.6 5.7	2"½ 1.8 3.0 5.0 5.7
Трубопроводные соединения Диаметр трубопросединения Мощность насоса насоса умеренного давления Мощность насоса насоса высокого давления Потребляемый ток насоса умеренного давления Потребляемый ток насоса высокого давления	(kW)	Bce Bce Bce Bce Bce Bce Bce Bce	2"½ 1.1 1.5 2.7 3.6	2°½ 1.1 1.5 2.7 3.6	2"½ 1.1 1.5 2.7 3.6	2"½ 1.1 1.5 2.7 3.6	Пластинча: С хомуто 2"½ 1.5 1.8 3.6 5.0 123	тый 2"½ 1.5 1.8 3.6 5.0 111	2°½ 1.5 3.0 3.6 5.7 91	2"½ 1.5 3.0 3.6 5.7 83	2"½ 1.8 3.0 5.0 5.7 91
Трубопроводные соединения Диаметр трубопросединения Мощность насоса насоса умеренного давления Мощность насоса насоса высокого давления Потребляемый ток насоса умеренного давления Потребляемый ток насоса высокого давления Статическое давление	(kW) (A) (A)	Bce Bce Bce Bce Bce Bce Bce Bce Bce	2"½ 1.1 1.5 2.7 3.6	2°½ 1.1 1.5 2.7 3.6	2"½ 1.1 1.5 2.7 3.6	2°½ 1.1 1.5 2.7 3.6	Пластинча: С хомутс 2"½ 1.5 1.8 3.6 5.0 123 141	тый 2"½ 1.5 1.8 3.6 5.0 111 130	2"½ 1.5 3.0 3.6 5.7 91 117	2°½ 1.5 3.0 3.6 5.7 83 103	2"½ 1.8 3.0 5.0 5.7 91 117
Трубопроводные соединения Диаметр трубопросединения Мощность насоса насоса умеренного давления Мощность насоса насоса высокого давления Потребляемый ток насоса умеренного давления Потребляемый ток насоса высокого давления Статическое давление	(kW)	Bce Bce Bce Bce Bce Bce Bce Bce	2"½ 1.1 1.5 2.7 3.6 - 104	2°½ 1.1 1.5 2.7 3.6 - 106	2"½ 1.1 1.5 2.7 3.6 - 96	2°½ 1.1 1.5 2.7 3.6 - 89	Пластинча: С хомуто 2"½ 1.5 1.8 3.6 5.0 123	тый 2"½ 1.5 1.8 3.6 5.0 111	2°½ 1.5 3.0 3.6 5.7 91	2"½ 1.5 3.0 3.6 5.7 83	2"½ 1.8 3.0 5.0 5.7 91
Трубопроводные соединения Диаметр трубопросединения Мощность насоса насоса умеренного давления Мощность насоса насоса высокого давления Потребляемый ток насоса умеренного давления Потребляемый ток насоса высокого давления Статическое давление	(kW) (A) (A)	Bce	2"½ 1.1 1.5 2.7 3.6 - 104	2°½ 1.1 1.5 2.7 3.6 - 106	2"½ 1.1 1.5 2.7 3.6 - 96 -	2°½ 1.1 1.5 2.7 3.6 - 89	Пластинча: С хомутс 2"1/2 1.5 1.8 3.6 5.0 123 141 127	тый 2"½ 1.5 1.8 3.6 5.0 111 130 117	2°½ 1.5 3.0 3.6 5.7 91 117 94	2"½ 1.5 3.0 3.6 5.7 83 103 76	2"½ 1.8 3.0 5.0 5.7 91 117 78
Трубопроводные соединения Диаметр трубопр.соединения Мощность насоса насоса умеренного давления Мощность насоса насоса высокого давления Потребляемый ток насоса умеренного давления Потребляемый ток насоса высокого давления Статическое давление насоса низкого давления	(kW) (A) (A) (kPa)	Bce Bce Bce Bce Bce Bce Bce Bce Bce Ec Ec Ec Ec Ec Ec Ec	2"½ 1.1 1.5 2.7 3.6 - 104	2°½ 1.1 1.5 2.7 3.6 - 106	2"½ 1.1 1.5 2.7 3.6 - 96 - 114	2°½ 1.1 1.5 2.7 3.6 - 89 - 104	Пластинча: С хомутс 2"½ 1.5 1.8 3.6 5.0 123 141 127 140 161 179	тый 2°½ 1.5 1.8 3.6 5.0 111 130 117 132 150 168	2"½ 1.5 3.0 3.6 5.7 91 117 94 117 184 210	2 2°½ 1.5 3.0 3.6 5.7 83 103 76 104 178 198	2"½ 1.8 3.0 5.0 5.7 91 117 78 106 134 162
Трубопроводные соединения Диаметр трубопросединения Мощность насоса насоса умеренного давления Мощность насоса насоса высокого давления Потребляемый ток насоса умеренного давления Потребляемый ток насоса высокого давления Статическое давление насоса низкого давления	(kW) (A) (A) (kPa)	Bce Bce Bce Bce Bce Bce Bce Bce Bce Ec Ec Ec Ec Ec Ec Ec	2"½ 1.1 1.5 2.7 3.6 - 104 - 113 - 143	2"½ 1.1 1.5 2.7 3.6 - 106 - 114 - 144	2"½ 1.1 1.5 2.7 3.6 - 96 - 114 - 135	2°½ 1.1 1.5 2.7 3.6 - 89 - 104 - 129	Пластинча: С хомутс 2"½ 1.5 1.8 3.6 5.0 123 141 127 140 161 179 166	тый 2°1/2 1.5 1.8 3.6 5.0 111 130 117 132 150 168 156	2"½ 1.5 3.0 3.6 5.7 91 117 94 117 184 210 188	2"½ 1.5 3.0 3.6 5.7 83 103 76 104 178 198 172	2"½ 1.8 3.0 5.0 5.7 91 117 78 106 134 162 140
Трубопроводные соединения Диаметр трубопросединения Мощность насоса насоса умеренного давления Мощность насоса насоса высокого давления Потребляемый ток насоса высокого давления Потребляемый ток насоса высокого давления Статическое давление насоса низкого давления Статическое давления Статическое давления Статическое давление насоса высокого давления	(kW) (A) (A) (kPa)	Bce Bce Bce Bce Bce Bce Bce Bce Bce Constant Constant	2"½ 1.1 1.5 2.7 3.6 - 104 - 113 - 143 - 152	2"½ 1.1 1.5 2.7 3.6 - 106 - 114 - 153	2"½ 1.1 1.5 2.7 3.6 - 96 - 114 - 135 - 153	2°½ 1.1 1.5 2.7 3.6 - 89 - 104 - 129 - 140	Пластинча: С хомутс 2"1/2 1.5 1.8 3.6 5.0 123 141 127 140 161 179 166 179	тый 2"½ 1.5 1.8 3.6 5.0 111 130 117 132 150 168 156 171	2°½ 1.5 3.0 3.6 5.7 91 117 94 117 184 210 188 215	2"½ 1.5 3.0 3.6 5.7 83 103 76 104 178 198 172 201	2"½ 1.8 3.0 5.0 5.7 91 117 78 106 134 162 140 170
Трубопроводные соединения Диаметр трубопросединения Мощность насоса насоса умеренного давления Мощность насоса насоса высокого давления Потребляемый ток насоса высокого давления Статическое давление насоса низкого давления Статическое давление насоса высокого давления Статическое давление насоса высокого давления Статическое давление насоса высокого давления	(kW) (A) (A) (kPa)	Bce Bce Bce Bce Bce Bce Bce Bce Bce Ec Ec Ec Ec Ec Ec Ec	2"½ 1.1 1.5 2.7 3.6 - 104 - 113 - 143 - 152 300	2"½ 1.1 1.5 2.7 3.6 - 106 - 114 - 153 300	2"½ 1.1 1.5 2.7 3.6 - 96 - 114 - 135 - 153 300	2"½ 1.1 1.5 2.7 3.6 - 89 - 104 - 129 - 140 300	Пластинча: С хомутс 2"1/2 1.5 1.8 3.6 5.0 123 141 127 140 161 179 166 179 500	тый 2"½ 1.5 1.8 3.6 5.0 111 130 117 132 150 168 156 171 500	2°½ 1.5 3.0 3.6 5.7 91 117 94 117 184 210 188 215 500	2"½ 1.5 3.0 3.6 5.7 83 103 76 104 178 198 172 201 500	2"½ 1.8 3.0 5.0 5.7 91 117 78 106 134 162 140 170 500
Трубопроводные соединения Диаметр трубопросединения Мощность насоса насоса умеренного давления Мощность насоса насоса высокого давления Потребляемый ток насоса высокого давления Статическое давление насоса низкого давления Статическое давление насоса высокого давления Статическое давление насоса высокого давления Статическое давление насоса высокого давления	(kW) (A) (A) (kPa)	Bce Bce	2"½ 1.1 1.5 2.7 3.6 - 104 - 113 - 143 - 152 300 -	2°½ 1.1 1.5 2.7 3.6 - 106 - 114 - 144 - 153 300	2°½ 1.1 1.5 2.7 3.6 - 96 - 114 - 153 300 -	2°½ 1.1 1.5 2.7 3.6 - 89 - 104 - 129 - 140 300 -	Пластинча: С хомутс 2"½ 1.5 1.8 3.6 5.0 123 141 127 140 161 179 166 179 500 82	тый 2°1/2 1.5 1.8 3.6 5.0 111 130 117 132 150 168 156 171 500 82	2°½ 1.5 3.0 3.6 5.7 91 117 94 117 184 210 188 215 500 82	2"½ 1.5 3.0 3.6 5.7 83 103 76 104 178 198 172 201 500 83	2"½ 1.8 3.0 5.0 5.7 91 117 78 106 134 162 140 170 500 83
Трубопроводные соединения Диаметр трубопр.соединения Мощность насоса насоса умеренного давления Мощность насоса насоса высокого давления Потребляемый ток насоса высокого давления Потребляемый ток насоса высокого давления Статическое давление насоса низкого давления Статическое давление насоса высокого давления Статическое бакааккумулятора	(kW) (A) (A) (kPa)	Bce E E E E E E E E E	2"½ 1.1 1.5 2.7 3.6 - 104 - 113 - 143 - 152 300 - 73	2°½ 1.1 1.5 2.7 3.6 - 106 - 114 - 144 - 153 300 - 73	2°½ 1.1 1.5 2.7 3.6 - 96 - 114 - 153 300 - 74	2°½ 1.1 1.5 2.7 3.6 - 89 - 104 - 129 - 140 300 - 75	Пластинча: С хомутс 2"½ 1.5 1.8 3.6 5.0 123 141 127 140 161 179 166 179 500 82 77	тый 2°1/2 1.5 1.8 3.6 5.0 111 130 117 132 150 168 156 171 500 82 77	2°½ 1.5 3.0 3.6 5.7 91 117 94 117 184 210 188 215 500 82 77	2 2°1½ 1.5 3.0 3.6 5.7 83 103 76 104 178 198 172 201 500 83 78	2"½ 1.8 3.0 5.0 5.7 91 117 78 106 134 162 140 170 500 83 78
Трубопроводные соединения Диаметр трубопр.соединения Мощность насоса насоса умеренного давления Мощность насоса насоса высокого давления Потребляемый ток насоса высокого давления Потребляемый ток насоса высокого давления Статическое давление насоса низкого давления Статическое давление насоса высокого давления Статическое бакааккумулятора	(kW) (A) (A) (kPa)	Bce Bce	2"½ 1.1 1.5 2.7 3.6 - 104 - 113 - 143 - 152 300 - 73	2°½ 1.1 1.5 2.7 3.6 - 106 - 114 - 144 - 73 - 73	2"½ 1.1 1.5 2.7 3.6 - 96 - 114 - 135 - 153 300 - 74	2°½ 1.1 1.5 2.7 3.6 - 89 - 104 - 129 - 140 300 - 75	Пластинча: С хомутс 2"½ 1.5 1.8 3.6 5.0 123 141 127 140 161 179 166 179 500 82 77 82	тый 2"½ 1.5 1.8 3.6 5.0 111 130 117 132 150 168 156 171 500 82 77 82	2"½ 1.5 3.0 3.6 5.7 91 117 94 117 184 210 188 215 500 82 77 82	2"½ 1.5 3.0 3.6 5.7 83 103 76 104 178 198 172 201 500 83 78 83	2"½ 1.8 3.0 5.0 5.7 91 117 78 106 134 162 140 170 500 83 78 85
Трубопроводные соединения Диаметр трубопросединения Мощность насоса насоса умеренного давления Мощность насоса насоса высокого давления Потребляемый ток насоса умеренного давления Потребляемый ток насоса высокого давления Статическое давление насоса низкого давления Статическое давление насоса высокого давления Статическое давление насоса высокого давления Статическое давление насоса высокого давления Емкость бакааккумулятора	(kW) (A) (A) (kPa)	Bce E E E E E E E E E	2"½ 1.1 1.5 2.7 3.6 - 104 - 113 - 143 - 152 300 - 73	2°½ 1.1 1.5 2.7 3.6 - 106 - 114 - 144 - 153 300 - 73	2"½ 1.1 1.5 2.7 3.6 - 96 - 114 - 135 - 153 300 - 74 - 75	2"½ 1.1 1.5 2.7 3.6 104 - 129 - 140 300 - 75 - 76	Пластинча: С хомутс 2"½ 1.5 1.8 3.6 5.0 123 141 127 140 161 179 166 179 500 82 77 82 74	тый 2"½ 1.5 1.8 3.6 5.0 111 130 117 132 150 168 156 171 500 82 77 82 74	2"½ 1.5 3.0 3.6 5.7 91 117 94 117 184 210 188 215 500 82 77 82 74	2"½ 1.5 3.0 3.6 5.7 83 103 76 104 178 198 172 201 500 83 78 83 75	2"½ 1.8 3.0 5.0 5.7 91 117 78 106 134 162 140 170 500 83 78 85 77
Трубопроводные соединения Диаметр трубопросединения Мощность насоса насоса умеренного давления Мощность насоса насоса высокого давления Потребляемый ток насоса умеренного давления Потребляемый ток насоса высокого давления Статическое давление насоса низкого давления Статическое давление насоса высокого давления Статическое давление насось бакааккумулятора	(kW) (A) (A) (kPa) (kPa)	Bce Bce	2"½ 1.1 1.5 2.7 3.6 - 104 - 113 - 152 300 - 73 - 74 -	2"½ 1.1 1.5 2.7 3.6 - 106 - 114 - 153 300 - 73 - 74 -	2"½ 1.1 1.5 2.7 3.6 - 96 - 114 - 135 - 153 300 - 74 - 75 -	2°½ 1.1 1.5 2.7 3.6 - 89 - 104 - 129 - 140 300 - 75 - 76	Пластинча: С хомутс 2"½ 1.5 1.8 3.6 5.0 123 141 127 140 161 179 166 179 500 82 77 82 74 50	тый 2"½ 1.5 1.8 3.6 5.0 111 130 117 132 150 168 156 171 500 82 77 82 74 50	2°½ 1.5 3.0 3.6 5.7 91 117 94 117 184 210 188 215 500 82 77 82 74 50	2°½ 1.5 3.0 3.6 5.7 83 103 76 104 178 198 172 201 500 83 78 83 75 51	2"½ 1.8 3.0 5.0 5.7 91 117 78 106 134 162 140 170 500 83 78 85 77 51
унспарители Диамер трубопроводные соединения Диамер трубопросединения Мощность насоса насоса умеренного давления Мощность насоса насоса высокого давления Потребляемый ток насоса высокого давления Статическое давления Статическое давление насоса низкого давления Статическое давление насоса высокого давления Статическое давление насоса высокого давления Звуковая мощность Звуковое давление	(kW) (A) (A) (kPa)	Bce Bce	2"½ 1.1 1.5 2.7 3.6 - 104 - 113 - 143 - 152 300 - 73	2°½ 1.1 1.5 2.7 3.6 - 106 - 114 - 144 - 73 - 73	2"½ 1.1 1.5 2.7 3.6 - 96 - 114 - 135 - 153 300 - 74 - 75	2"½ 1.1 1.5 2.7 3.6 104 - 129 - 140 300 - 75 - 76	Пластинча: С хомутс 2"½ 1.5 1.8 3.6 5.0 123 141 127 140 161 179 166 179 500 82 77 82 74	тый 2"½ 1.5 1.8 3.6 5.0 111 130 117 132 150 168 156 171 500 82 77 82 74	2"½ 1.5 3.0 3.6 5.7 91 117 94 117 184 210 188 215 500 82 77 82 74	2"½ 1.5 3.0 3.6 5.7 83 103 76 104 178 198 172 201 500 83 78 83 75	2"½ 1.8 3.0 5.0 5.7 91 117 78 106 134 162 140 170 500 83 78 85 77

Указанные технические характеристики относятся к следующим условиям:

Охлаждение:

Звуковое давление измерено в свободном пространстве на расстоянии 10 м при коэффициенте направленности, равном 2 (в соответствии со стандартом ISO 3744 Электропитание – 400В

температура воды на выходе 7°С;
 температура наружного воздуха 35 °С;
 разность температур t = 5 °С.

Модель NRL			Мод,	280	300	330	350	500	550	600	650	700
Высота	(mm)	A	Bce	1606	1606	1606	1606	1875	1875	1875	1875	1875
Ширина	(mm)	В	Bce	1100	1100	1100	1100	1100	1100	1100	1100	1100
	()		° - L	2450	2450	2450	2450	2950	2950	2950	2950	2950
Глубина	(mm)	C	A - E	2450	2950	2950	2950	2950	2950	2950	2950	3950
6	(1)		° - L	675	684	688	704	868	872	968	983	1091
Масса без воды	(kg)		A - E	686	751	761	767	955	959	1142	1155	1323

Примечание: Для типоразмеров 280, 300, 330, 350 доступны модификации только (L-E)

Холодильные машины с осевыми вентиляторами с холодопроизводительностью от 174 кВт до 469 кВт

R410A

Aermec adheres to the EUROVENT Certification Programme. The products concerned appear in the EUROVENT Certified Products Guide.

- ВЫСОКОЭФФЕКТИВНАЯ МОДИФИКАЦИЯ
- ВЫСОКОЭФФЕКТИВНАЯ МОДИФИКАЦИЯ С ПОНИЖЕННЫМ УРОВНЕМ ШУМА
- КОМПАКТНАЯ МОДИФИКАЦИЯ
- КОМПАКТНАЯ МОДИФИКАЦИЯ В МАЛОШУМНОМ **ИСПО**ЛНЕНИИ
- ДВА ХОЛОДИЛЬНЫХ КОНТУРА
- МОДИФИКАЦИЯ С ЦИРКУЛЯЦИОННЫМ **HACOCOM**
- МОДИФИКАЦИЯ С ЦИРКУЛЯЦИОННЫМ НАСОСОМ И БАКОМ-НАКОПИТЕЛЕМ

Характеристики:

- 9 разных типоразмеров
- Хладагент R410A
- 2 холодильных контура
- Высокая эффективность даже при неполной нагрузке.
- Высокоэффективные компрессоры спирального типа.
- Вентиляторы осевого типа с пониженным уровнем шума.
- Прочная конструкция корпуса с антикоррозионным покрытием из полиэстера. Предельная температура эксплуатации в режиме охлаждения до +46°C
- Максимально возможная температура производимой воды + 18°C
- Возможные модификации:
- о Только охлаждение, компактная;
- L Только охлаждение, компактная, низкошуманая;

- А Только охлаждение, высокоэффективная;
- Е Только охлаждение, высокоэффективная, низкошумная;
- Электронный термостатический вентиль (ТРВ) также для производства воды с температурой до -6° С
- (о) Стандартно поставляется с механическим ТРВ.
- (Y) Механический ТРВ для производства воды с температурой до -6° C
- Увеличенные вентиляторы
- Модификация с насосным агрегатом и баком-накопителем, в комплекте с водяным фильтром, реле протока, расширительным баком, узлом заправки контура и электрическим обогревателем.
- Микропроцессорная система управления:
- Контроль температуры входящей воды, с

- возможностью выбора контроля по выходящей воде;
- Контроль давления конденсации с модулирующим сигналом 0-10В, в зависимости от давления, с компенсацией согласно температуре наружного воздуха (с использованием системы DCPX);
- Чередование работающих компрессоров и насосов в зависимости от времени наработки;
- Безопасный контроль производительности;
- Датчики низкого и высокого давления (стандартно во всех модификациях);
- Автоматический перезапуск после нескольких аварий, перед полной остановкой;
- 4 языка меню;
- История аварий;

Дополнительное оборудование:

AER485: Интерфейс (стандарта RS485) для систем диспетчеризации с протоколом MODBUS

AVX: Виброизолирующие опоры пружинного типа. Конкретная модель выбирается из таблицы совместимости.

DCPX: Система, обеспечивающая работу холодильной машины при температуре ниже 10°С (до -10°С). Она состоит из электронной карты, регулирующей скорость вращения вентиляторов в зависимости от давления конденсации, регистрируемого датчиком высокого давления, и поддерживает давление на необходимом уровне. Система также обеспечивает функционирование холодильной машины в режиме «теплового насоса» при температуре воздуха, превосходящей 30°C (до 42°C)

DRE: Электронная система, уменьшающая пиковые значение тока (приблизительно 30% уменьшение для одноконтурных машин, 26% - для двухконтурных, 22% для трехконтурных машин). Доступно только для машин с питанием 400В- 3 фазы. Устанавливается на заводе-изготовителе.

GP: Решетка, защищающая внешний тепло-

обменник от повреждений

PGS: Программатор ежедневного/еженедельного расписания работы. Используется для задания двух моментов времени на каждые сутки (то есть, двух циклов включения/отключения). Для каждого дня недели можно задать различные программы работы.

RIF: Конденсаторная система. Подключается параллельно с обмотками электромотора. Позволяет поддерживать cos=0,95 а также позволяет снижать потребляемый ток (примерно на 10%). Устанавливается на заводеизготовителе, поэтому необходимость установки такой системы должна быть отражена в заказе на поставку оборудования.

AERWEB30: Система, обеспечивающая дистанционное управление работой холодильной машины с персонального компьютера с помощью последовательного подключения. При использовании дополнительного модуля AERMODEM управление может осуществляться по телефонной сети, а при использовании модуля AERMODEMGSM с помощью стандарта GSM. AERWEB позволяет управлять работой до 9 холодильных машин, каждая из которых должна быть оборудована дополнительным устройством AER485 или AER485P2

DUALCHILLER: Упрощенная система управления, предназначенная для включения/выключения двух холодильных машин, входящих в единую систему и оборудованных контроллером GR3 компании AERMEC. Включение/ выключение происходит так, как если бы имелась только одна холодильная машина.

IULTICHILLER: Система управления, предназначенная для включения/отключения отдельных холодильных машин, входящих в единую систему и подключенных параллельно. При этом поддерживается постоянный расход воды во всех испарителях.

TRX1: Металлическая заглушка, применяемая вместо пластиковой (стандартной) и закрывающая отверстия в накопительном баке, предназначенные для установки дополнительного электро-обогревателя.

PRM1 и 2: Оборудование устанавливаемое на заводе-изготовителе. Это ручное реле давления, электрически подключенное параллельно с существующим автоматическим реле высокого давления на стороне нагнетания компрессора.

			Совместим	ость допол	нительного	оборудован	ІИЯ			
Mod. NRL	Vers.	750	800	900	1000	1250	1400	1500	1650	1800
AER485	Bce	<u> </u>	V	V	V	V	~	~	~	~
DUALCHILLER	Bce	V	V	V	V	V	~	~	V	<u> </u>
MULTICHILLER	Bce	~	V	V	V	V	~	~	~	~
PGS	Bce	V	~	~	~	V	~	~	V	V
AERWEB30	Bce	V	V	V	V	V	~	~	~	~
TRX1	Bce	V	V	~	~	V	~	~	V	V
AVX	Bce	-	V	V	V	V	~	~	~	~
VT	Bce	23	-	-	-	-	-	-	-	-
	0	64	64	64	65	65	66	66	67	67
	L	стандарт	стандарт	стандарт	стандарт	стандарт	стандарт	стандарт	стандарт	стандарт
DCPX	A	64	66	66	66	67	67	67	68	68
	E	стандарт	стандарт	стандарт	стандарт	стандарт	стандарт	стандарт	стандарт	стандарт
DCPX "М" для	0	65	65	65	65	65	66	66	68	68
модификации с	L	стандарт	стандарт	стандарт	стандарт	стандарт	стандарт	стандарт	стандарт	стандарт
увеличенными	A	65	66	66	66	68	68	68	68	68
вентиляторрами	E	стандарт	стандарт	стандарт	стандарт	стандарт	стандарт	стандарт	стандарт	стандарт
DRE	Bce	751	801	901	1001	1251	1401	1501	1651	1801
CD	° - L	10 (x3)	10 (x3)	10 (x3)	10 (x4)	10 (x4)	350	350	350	350
GP	A - E	10 (x3)	260	260	260	350	350	350	500	500
TP2	Bce	(x2)	(x 2)	(x 2)	(x 2)	(x 2)	(x 2)	(x 2)	(x 2)	(x 2)
DIF	° - L	53	87	89	91	91	93	94	94	94
RIF	A - E	53	88	90	92	92	93	94	94	94
PRM1/PRM2	Bce		~	~	~	<u> </u>	~	~	V	~

Выбор модификации:

Комбинируя различные опции, можно подобрать такую модель серии NRL, которая наиболее полно отвечает требованиям Заказчика.

Выбор модификации:

Код:

NRL

Типоразмер:

075, 080, 090, 100, 125, 140, 150, 165, 180

Компрессор:

0 - стандартный, для хладагента R410A

Вентиль терморегулирующий:

0- стандартный, механический терморегулирующий вентиль, для охлаждения воды до +4°C

Ү-механический терморегулирующий вентиль, для охлаждения воды до -6°C

Модель:

0- только охлаждение,

Система рекуперации:

0- без системы рекуперации

D- с частичной рекуперацией

(пароохладитель)

Т- с полной рекуперацией (не доступно в версиях с баком-накопителем)

Модификация:

0- стандартная, компактная установка L-компактная установка, с пониженным уровнем шума

А- высокоэффективная установка Е – высокоэффективная установка с пониженным уровнем шума.

Теплообменники:

0- Алюминиевое оребрение

R- Мелное оребрение

S- Оребрение из луженой меди

V- Алюминиевое оребрение с защитным эпоксидным покрытием

Вентиляторы:

0- стандартные

М- увеличенного размера

J- со встроенным инверторным

управлением Электропитание:

0 - 400В, 3 фазы, переменный ток, 50Гц, с термомагнитным размыкателем

2 - 500В, 3 фазы, переменный ток, 50Гц, с термомагнитным размыкателем (для подбора DCPX свяжитесь с представителем AERMEC)

Накопительный бак:

00 - без накопительного бака

01 – с баком и одним низконапорным насосом

02 - с баком и низконапорными насосами: рабочим и резервным

03 - с баком и одним высоконапорным насосом

04 -с баком и высоконапорными насосами: рабочим и резервным

05 -с баком (с отверстиями для

дополнительного электрообогревателя) и

одним низконапорным насосом

06 - с баком (с отверстиями для дополнительного электрообогревателя) и низконапорными насосами – рабочим и резервным

07 - с баком (с отверстиями для дополнительного электрообогревателя) и одним высоконапорным насосом

08 - с баком (с отверстиями для дополнительного электрообогревателя) и высоконапорными насосами – рабочим и резервным

09 – с двойным контуром циркуляции воды 10 - с двойным контуром циркуляции воды, с дополнительным электрообогревателем Р1 – без бака, с одним низконапорным

насосом Р2 – без бака, с низконапорными насосами - рабочим и резервным

Р3 - без бака, с одним высоконапорным насосом

Р4 – без бака, с высоконапорными насосами – рабочим и резервным

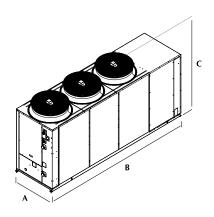
Внимание:

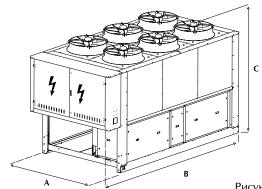
- модификации D T C не совместимы с модификацией Y
- стандартные опции показаны символом «0»
- типоразмер 750 не доступен в версии с питанием 500В, 3 фазы, 50Гц

Пример расшифровки кодового обозначения: NRL0900°°°°°°°00 – это холодильная машина типоразмера 090, со стандартным механическим термостатическим вентилем, с минимальной температурой холодоносителя $+4^{\circ}$ С, для работы только в режиме охлаждения, стандартная компактная машина, с алюминиевым оребрением конденсатора, стандартными вентиляторами, с электропитанием 400В, 3 фазы, 50 Гц, без бака гидромодуля.

Технические данные:

Mod. NRL		Vers.	750	800	900	1000	1250	1400	1500	1650	1800
	(kW)		190	211	231	257	303	338	375	412	449
Олодопроизводительность	()	L	174	190	210	235	271	302	336	366	393
•		A	195	218	242	271	322	357	399	437	469
		Е	180	203	224	250	298	329	367	409	436
	(kW)	•	69	78	92	104	121	142	161	175	187
Толная потр. мощность	(KVV)	L	75	88	101	113	134	157	177	192	208
толная потр. мощноств		<u>A</u>	62	69	81	93	106	124	142	154	167
		E	68	76	88	101	115	134	154	165	179
	(1.11)	0	32680	36290	39730	44200	52120	58140	64500	70860	77230
	(l/h)	L	29930	32680	36120	40420	46610	51940	57790	62950	67600
асход воды		A	33540	37500	41620	46610	55380	61400	68630	75160	80670
		E	30960	34920	38530	43000	51260	56590	63120	70350	74990
		0	86	66	68	73	80	73	79	59	59
	(kPa)	L	72	55	57	61	65	59	64	48	46
lадение давления			88	66	70	70	73	78	61	61	62
		A									
		<u>E</u>	75	58	61	61	63	67	52	54	54
	(W/W)		2.75	2.71	2.51	2.47	2.50	2.38	2.33	2.35	2.40
ER	(**/**)	L	2.32	2.16	2.08	2.08	2.02	1.92	1.90	1.91	1.89
LIX		<u>A</u>	3.15	3.16	2.99	2.91	3.04	2.88	2.81	2.84	2.81
		Е	2.65	2.67	2.55	2.48	2.59	2.46	2.38	2.48	2.44
	(* . * . * . *)	0	3.87	4.19	3.97	3.98	3.96	3.76	3.68	3.72	3.79
CEED	(W/W)	L	3.85	4.10	3.95	3.95	3.84	3.65	3.61	3.62	3.59
SEER		A	4.19	4.39	4.27	4.17	4.34	4.12	4.02	4.06	4.02
		E	4.05	4.27	4.20	4.08	4.28	4.05	3.93	4.02	4.02
A FIXTROPHATAL 11 45		ь	7.03	7.4/	7.40	4.08 400V-3-50		1.03	3.73	7.04	7.02
Э ЛЕКТРОПИТАНИЕ		0	122	1.40	166			2.40	206	205	210
	(A)		122	142	166	189	208	249	286	305	319
Іотребляемый ток	(11)	L	113	153	177	200	226	269	308	328	348
тотреологивит ток		<u>A</u>	113	136	158	180	196	235	273	289	304
		E	109	145	169	192	211	251	292	306	324
, (FLA)	(1)	°-L	144	170	192	217	261	290	319	358	391
Лаксимальный ток(FLA)	(A)	A-E	144	173	195	217	267	296	325	365	398
		°-L	320	345	401	426	529	499	528	626	659
1иковой ток (LRA)	(A)	A-E	320	348	404	426	535	505	534	633	666
OLIBBOSCODI I TIAR		Bce	320	340	101	Спиральн		303	334	033	000
омпрессоры тип	A T:		1/2	1/2	1/2			F /2	(12	(1)	(1)
СОМПРЕССОРЫ/КОНТУРЫ	A-E	°-L	4/2	4/2	4/2	4/2	4/2	5/2	6/2	6/2	6/2
		4/2	4/2	4/2	4/2	5/2	6/2	6/2	6/2	6/2	
вентиляторы тип		Bce				Осевые					
	(m ³ /h)	•	51400	54900	54150	75800	73200	77000	76000	108300	106200
2000 1 200 1100	(III-/II)	L	42700	38430	40575	53060	51240	57700	60800	75810	74340
Расход воздуха		A	49000	72800	71500	70200	106200	104100	102000	125800	122000
		E	35300	50960	51805	52650	74340	75420	76500	91110	91500
	(no.)	°-L	3	3	3	4	4	4	4	6	6
Вентиляторы	(110.)	A-E	3	4	4	4	6	6	6	8	8
1спарители		Bce		-1	-1	Пластинч		<u> </u>	0	U	
							ia i bic				
рубопроводные соединения		Bce	422	422	422	Victaulic	422	422	422	422	
иаметр трубопр.соединения	Все	2"1/2	4"	4"	4"	4"	4"	4"	4"	4"	
Лощность насоса гасоса умеренного ,авления	(kW)	Bce	3.0	3.4	3.4	3.4	4.6	4.6	5.9	5.9	5.9
Лощность насоса асоса высокого давления	(kW)	Bce	5.5	5.7	5.7	5.7	8.3	8.3	8.3	10.5	10.5
Іотребляемый ток асоса умеренного авления	(A)	Bce	6.2	5.8	5.8	5.8	7.8	7.8	10.0	10.0	10.0
Тотребляемый ток асоса высокого давления	(A)	Все	11.0	9.7	9.7	9.7	14.1	14.1	14.1	17.8	17.8
Статическое		0	81	100	92	91	111	102	88	109	99
		L	92	120	112	111	139	133	116	134	130
авление насос	(Kra)	A	71	109	95	85	103	82	106	94	82
изкого давления		Е	82	122	111	104	125	108	125	111	102
		0	201	219	211	208	256	246	220	246	237
		-	212	241	232	229	286	279	258	271	267
Статическое					43L	447	200	417	_	4/1	
татическое авление насос	(kPa)	<u>L</u>				200	247	222	226	222	221
Статическое давление насос высокого давления	(kPa)	A	191	227	213	200	247	222	226	233	221
авление насос	(kPa)					200 216 700	247 264 700	222 246 700	226 250 700	233 245 700	221 236 700


Звуковое давление измерено в свободном пространстве на расстоянии 10 м при коэффициенте направленности, равном 2 (в соответствии со стандартом ISO 3744 Электропитание – 400В


Указанные технические характеристики относятся к следующим условиям:

- Охлаждение:
- температура воды на выходе 7°С;
 температура наружного воздуха 35 °С;
 разность температур t = 5 °С.

Mod. NRL		Vers.	750	800	900	1000	1250	1400	1500	1650	1800
		0	85.0	86.0	86.0	90.0	91.0	90.5	90.5	92.0	92.0
2pv//opag volumosti	dB(A)	L	80.0	83.0	83.0	87.0	88.0	87.5	87.5	89.0	89.0
Звуковая мощность	ub(A)	A	85.0	88.0	88.0	88.0	91.0	90.5	90.5	91.5	93.5
		E	77.0	83.0	83.0	83.0	86.0	85.5	85.0	86.5	88.5
		0	53.0	54.0	54.0	58.0	59.0	58.5	58.5	60.0	60.0
25,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	JD(A)	L	48.0	51.0	51.0	55.0	56.0	55.5	55.5	57.0	57.0
Звуковое давление	dB(A)	A	53.0	56.0	56.0	56.0	59.0	58.5	58.5	59.5	61.5
		E	45.0	51.0	51.0	51.0	54.0	53.5	53.0	54.5	56.5

Размеры (мм):

P	исунки	даны	только	ДЛЯ	примера!	
---	--------	------	--------	-----	----------	--

Mod. NRL			Vers.	750	800	900	1000	1250	1400	1500	1650	1800
D	()	-	° - L	1975	1975	1975	1975	1975	2450	2450	2450	2450
Высота	(mm)	C	A - E	1975	2450	2450	2450	2450	2450	2450	2450	2450
	()		° - L	1500	1500	1500	1500	1500	2200	2200	2200	2200
Ширина	(mm)	A	A - E	1500	2200	2200	2200	2200	2200	2200	2200	2200
	()	D	° - L	4350	4355	4355	5355	5355	4250	4250	4250	4250
Глубина	(mm)	В	A - E	4350	3400	3400	3400	4250	4250	4250	5750	5750
			0	1382	1730	1860	2015	2135	2765	2960	3055	3160
			L	1382	1740	1870	2025	2145	2775	2970	3065	3170
Macca			A	1663	2120	2265	2410	2710	2910	3125	3620	3735
			Е	1663	2135	2280	2425	2725	2925	3140	3635	3750

NRL 2000/3600

Холодильные машины с воздушным охлаждением и осевыми NRL вентиляторами с холодопроизводительностью от 500 до 938 кВт

R410A

Aermec adheres to the EUROVENT Certification Programme. The products concerned appear in the EUROVENT Certified Products Guide.

- ВЫСОКОЭФФЕКТИВНЫЕ МОДИФИКАЦИИ
- ВЫСОКОЭФФЕКТИВНЫЕ МОДИФИКАЦИИ С ПОНИЖЕННЫМ УРОВНЕМ ШУМА
- КОМПАКТНАЯ КОНСТРУКЦИЯ

- КОМПАКТНАЯ КОНСТРУКЦИЯ С ПОНИЖЕННЫМ УРОВНЕМ ШУМА
- 4 ХОЛОДИЛЬНЫХ КОНТУРА МОДИФИКАЦИИ:
- С ЦИРКУЛЯЦИОНЫМ НАСОСОМ
- С ЦИРКУЛЯЦИОННЫМ НАСОСОМ И НАКОПИТЕЛЬНЫМ БАКОМ

Характеристики

- 7 типоразмеров.
- Хладагент R410A.
- 4 холодильных контура.
- Высокая эффективность даже при неполной тепловой нагрузке.
- Конструкция теплообменников, оптимизированная для применения хладагента R410A, обладающего прекрасными свойствами теплообмена.
- Высокоэффективные компрессоры спирального типа.
- Аксиальные вентиляторы с пониженным уровнем шума.
- Высокопрочный корпус с антикоррозионным покрытием из полиэстера.
- Работа в режиме охлаждения при температуре наружного воздуха до 46 °C

Модификации и опции:

- компактная модификация
- L компактная модификация с пониженным уровнем шума
- А повышенной эффективности
- Е повышенной эффективности с понижен-

ным уровнем шума

- Опции терморегулирующего вентиля (определяется при выборе конфигурации):
- (°) стандартный механический терморегулирующий вентиль;
- (Y) механический терморегулирующий вентиль для охлаждения воды до -6 °C;
- (X) электронный терморегулирующий вентиль для охлаждения воды до -6 °C;
- Опции вентиляторов (определяется при выборе конфигурации):
- (°) стандартный;
- М увеличенного размера;
- Ј с инверторным управлением двигателем.
- Модификации с насосным агрегатом и накопительным баком, оборудованные водяным фильтром, расходомером воды, расширительным резервуаром, устройством для заливки воды и электронагревателем защиты от замораживания.

Микропроцессорная система управления:

 контроль температуры воды на входе и возможность контроля температуры

- воды на выходе;
- регулировка температуры конденсации при работе в летнем режиме с помощью управляющего сигнала напряжением 0 -10 В в зависимости от давления в системе (при использовании системы DCPX);
- чередование работающих компрессоров и насосов в зависимости от времени наработки;
- снижение производительности в случае предаварийных ситуаций;
- датчики высокого давления (в стандартной
- комплектации);
- датчики низкого давления (в стандартной комплектации);
- автоматическая аварийная сигнализация перед полным отключением системы;
- индикация сообщений на 4 языках;
- индикация предыстории аварийных ситуаций.

Дополнительное оборудование

- **AER485:** Интерфейс (стандарта RS485) для обмена данными через сеть телеметрического управления системами здания по протоколу MODBUS.
- AVX: Пружинные вибропоглощающие опоры корпуса; выбираются в соответствии с таблицей совместимости дополнительного оборудования.
- DCPX: Система, обеспечивающая работу холодильной машины при температуре ниже 10°C (до -10°C). Она состоит из электронной карты, регулирующей скорость вращения вентиляторов в зависимости от давления конденсации, регистрируемого датчиком давления, и поддерживает давление на необходимом уровне.
- **DRE:** Электронная система, уменьшающая пиковые значения тока. Устанавливается на заводе изготовителе.
- **GP:** Решетка, защищающая внешний теплообменник от повреждений.
- PGS: Программатор ежедневного/еженедельного расписания работы. Используется для

- задания двух моментов времени на каждые сутки (то есть, двух циклов включения/отключения). Для каждого дня недели можно задать различные программы работы.
- RIF: Система перефазировки напряжения, подключаемая к электромотору и снижающая пусковой ток. Устанавливается на заводе изготовителе, поэтому необходимость установки такой системы должна быть отражена в заказе на поставку оборудования.
- АЕRWEB30: Система, обеспечивающая дистанщионное управление работой холодильных машин с персонального компьютера с последовательным подключением. При использовании дополнительного модуля AERMODEM управление может осуществляться по телефонной сети, а при использовании модуля AERMODEMGSM с мобильного телефона стандарта GSM. Система AERWEB позволяет управлять работой до 9 холодильных машин, каждая из которых должна быть

оборудована дополнительными устройствами AER485 или AER485P2.

- DUALCHILLER: Упрощенная система управления, предназначенная для включения/ выключения двух холодильных машин, входящих в единую систему и оборудованных устройствами AERMEC GR3. Управление происходит так, как если бы имелась только одна холодильная машина.
- MULTICHILLER: Система управления, предназначенная для включения/выключения- отдельных холодильных машин, входящих в единую систему и подключенных параллельно. При этом поддерживается постоянный расход воды во всех испарителях.
- TRX1: Металлическая заглушка, применяемая вместо пластиковой (стандартной) и закрывающая отверстия в накопительном баке, предназначенные для установки электронагревательного элемента.

		Совм	естимость допо	олнительного об	борудования			
Mod. NRL	Vers.	2000	2250	2500	2800	3000	3300	3600
AER485P1	Bce	V	V	~	V	V	V	V
PGS	Bce	V	V	V	V	V	~	V
TRX1	Все	V	V	V	V	V	V	V
D.CDV	۰	-	-	-	78	78	81	81
DCPX	L	Стандарт	Стандарт	Стандарт	Стандарт	Стандарт	Стандарт	Стандарт
	A	78	79	81	81	81	82	82
	E	Стандарт	Стандарт	Стандарт	Стандарт	Стандарт	Стандарт	Стандарт
DCPX "М" дл	я_°	-	-	-	78	78	82	82
	c L	Стандарт	Стандарт	Стандарт	Стандарт	Стандарт	Стандарт	Стандарт
увеличенным	иА	78	80	82	82	82	82	82
вентиляторами	E	Стандарт	Стандарт	Стандарт	Стандарт	Стандарт	Стандарт	Стандарт
	° - L	-	-	-	350 x 2	350 x 2	350 x 2	350 x 2
GP	A - E	260 x 2	260 350	350 x 2	350 x 2	350 x 2	500 x 2	500 x 2
DIE	° - L	-	-	-	RIFNRL2800	RIFNRL3000	RIFNRL3300	RIFNRL3600
RIF	A - E	RIFNRL2000	RIFNRL2250	RIFNRL2500	RIFNRL2800	RIFNRL3000	RIFNRL3300	RIFNRL3600
PRM1/PRM2	Bce	✓	✓	V	✓	✓	✓	V
1) () (00)	° - L	-	-	-	785	791	791	791
AVX (00)	A - E	767	773	779	785	791	798	798
1) (// (01 02 02 04)	° - L	-	-	-	786	792	792	792
AVX (01-02-03-04)	A - E	768	774	780	786	792	799	799
AV/V (D4 D2 D2 D4)	° - L	-	-	-	787	793	793	793
AVX (P1-P2-P3-P4)	A - E	769	775	781	787	793	800	800

Выбор модификации

Комбинируя различные опции, можно подобрать такую модель серии NRL, которая наиболее полно отвечает требованиям заказчика.

Код:

NRL

Типоразмер: 2000,2250,2500,2800,3000,3300,3600

Компрессоры:

O стандартные, для хладагента R410A

Терморегулирующий вентиль:

- стандартный, механический, для охлаждения воды до +4 °C
- механический, для охлаждения воды до 6 °C электронный, для охлаждения воды до 6 °C

Модель:

- только охлаждение

Система рекуперации тепла:

- без системы рекуперации
- D с пароохладителем
- T с полной рекуперацией **Модификация:**

- компактная
- L компактная, с пониженным уровнем шума
- А повышенной эффективности Е повышенной эффективности, с пониженным уровнем шума

Теплообменники:

- алюминиевые
- R медные
- медные, луженные
- V алюминиево-медные, с покрытием из эпоксидных смол

Вентиляторы:

- стандартные
- М увеличенного размера (280700)
- с инверторным управлением (500700)

Электропитание:

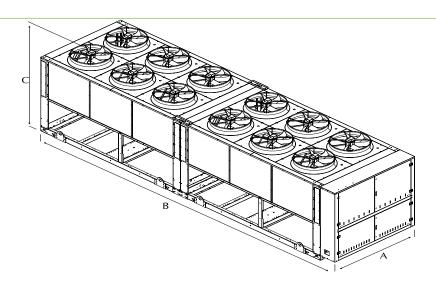
- 400 В, трехфазное, 50 Гц, с термомагнитными
- размыкателями цепи 2 500 В, трехфазное, 50 Гц, с термомагнитными размыкателями цепи (для подбора DCPX свяжитесь с представителем AERMEC)

Внимание:

опции D-T-С не совместимы с опцией Y

стандартные модификации обозначаются символом °

Пример расшифровки кодового обозначения: NRL2000°°°°°°00 это холодильная машина NRL типоразмера 2000 с механическим терморегулирующим вентилем, работающая только на охлаждение, компактная, без системы рекуперации тепла, с алюминиевым теплообменником конденсатора, стандартными вентиляторами, электропитанием от трехфазного напряжения 400 В, 50 Гц, без накопительного бака и насоса.


Накопительный бак:

- 00 без бака
- 01 с баком и одним насосом умеренного давления
- 02 с баком и резервным насосом умеренного давления 03 с баком и одним насосом высокого давления
- 04 с баком и резервным насосом высокого давления
- 05 с баком, имеющим отверстия для крепления электронагревателя, и одним насосом умеренного давления 06 с баком, имеющим отверстия для крепления
- электронагревателя, и резервным насосом умеренного давления 07 с баком, имеющим отверстия для крепления
- электронагревателя, и одним насосом высокого давления 08 с баком, имеющим отверстия для крепления электронагревателя, и резервным насосом высокого
- давления 09 с двойным контуром циркуляции воды
- 10 с двойным контуром циркуляции воды и встроенным электронагревателем
- без бака, с насосом умеренного давления
- Р2 без бака, с насосом умеренного давления и резервным насосом
- РЗ без бака, с насосом высокого давления
- Р4 без бака, с насосом высокого давления и резервным насосом

Mod. NRL		Модиф.	2000	2250	2500	2800	3000	3300	3600
		0				676	750	824	898
VOAOAORDOMOROAMETOM MOSTI	(kW)	L				604	672	733	786
Холодопроизводительность	(KW)	A	542	593	644	714	798	874	938
		Е	500	548	596	658	734	818	872
Потребляемая мощность	(1-347)	0				284	322	350	374
потреодяемая мощность	(kW)	L				314	354	384	416
		<u>A</u>	186	199	212	248	284	308	334
		E	202	216	230	268	308	330	358
Расход воды	(l/h)	0				116270	129000	141730	154460
. целод водог	(1/11)	L				103890	115580	125900	135190
		A	93220	102000	110770	122810	137260	150330	161340
		E	86000	94260	102510	113180	126250	140700	149980
	(kPa)	L				73.0 59.1	78.6	59.5	58.8
Падение давления		A	70.4	72.6	72.6	77.8	63.8	47.9 60.8	45.9 61.7
		E	60.7	63.0	63.0	66.9	52.1	53.7	53.9
		0	00.7	03.0	03.0	2.38	2.33	2.35	2.40
EER	(W/W)	L				1.92	1.90	1.90	1.89
		A	2.91	2.98	3.04	2.88	2.81	2.84	2.81
		E	2.48	2.54	2.59	2.46	2.38	2.48	2.44
		0	2.10	2.01	2.00	3.76	3.68	3.72	3.79
ESEER	(W/W)	L				3.65	3.61	3.62	3.59
		A	4.17	4.25	4.34	4.12	4.02	4.06	4.02
		E	4.08	4.18	4.28	4.05	3.93	4.02	4.02
Электропитание	(A)	(Bce)			400V-3-50				
Тип компрессора		()			Спираль				
	()	° - L			Ciripana	10/4	12/4	12/4	12/4
Компрессоры	(no.)	A - E	8/4	8/4	8/4	10/4	12/4	12/4	12/4
	(2.0)	0				154000	152000	216600	212400
Полный расход воздуха	(m^3/h)	L				115400	121600	151620	148680
		A	140400	176400	212400	208200	204000	266000	244000
		E	105300	126990	148680	150840	153000	192300	183000
D. C	(1)	0				498	572	610	638
Рабочий ток	(A)	L				538	616	656	696
		A	361	377	393	470	547	563	589
		E	384	403	421	502	583	613	649
Максимальный ток (FLA)	(1)	° - L				580	638	716	782
Максимальный ТОК (FLA)	(A)	A - E	434	484	534	592	650	729	795
Пусковой ток (LRA)	(A)	° - L				789	847	984	1050
	(A)	A - E	643	752	802	801	859	997	1063
Тип компрессора					Спираль				
Компрессоры	(no.)	° - L				10/4	12/4	12/4	12/4
	()	A - E	8/4	8/4	8/4	10/4	12/4	12/4	12/4
Испаритель тип		Bce			Пластинч				
Трубопр. соединения тип		,			С хомутом				
Кол-во трубопр. соединений	2	2	2	2	2	2	2		
		°-L	-			4"	4"	4"	4"
Трубопр. соединения	Ø	A-E	4"	3"/4"	4"	4" 4"	<u>4"</u> 4"	4" 4"	<u>4"</u> 4"
Емкость бака	(1)	Bce Bce	4	3 /4	4	2 x 700	4	4	4
LWKOCTB Oaka	(1)	<u>все</u>				9.6	9.6	13.0	13.0
Потребл. мощн.	(1-347)	L				9.6	9.6	9.6	9.6
насоса умеренного	(kW)	A	7.4	3.7+4.8	9.6	9.6	9.6	9.6	9.6
давления		E	15.4	7.7+4.8	9.6	9.6	9.6	9.6	9.6
Потребл. мощн.		°/L	13.4	7.714.0	7.0	17.2	17.2	24.7	24.7
насоса высокого давления	(kW)	A/E	13.0	6.5+8.6	17.2	17.2	17.2	17.2	17.2
Потребл. ток		°/L	13.0	0.5 1 0.0	17.2	16.3	16.3	22.0	22.0
насоса умеренного давл.	(A)	A/E	12.4	6.2+8.1	16.2	16.3	16.3	22.0	22.0
Потребл. ток		°/L	12.1	0.2 : 0.1	10.2	29.2	29.2	42.4	42.4
насоса высокого давления	(A)	A/E	22.0	11+14.6	29.2	29.2	29.2	42.4	42.4
Статическое давление	/I.D. \	0			-	102	88	109	99
насоса умеренного давл.	(kPa)	L				133	116	134	130
		A	85	103	103	82	106	94	82
		E	104	118	125	108	125	111	102
Статическое давление	(I.D.)	0				246	220	246	237
насоса высокого давления	(kPa)	L				279	258	271	267
		A	200	227	247	222	226	233	221
		E	216	245	264	246	250	245	236
		0				93.5	93.5	95.0	95.0
Звуковая мощность	(dBA)	L				90.5	90.5	92.0	92.0
	. /	A	91	93	94	93.5	93.5	94.5	96.5
		E	86.0	88	89.0	88.5	88.0	89.5	91.5

Mod. NRL	Модиф.	2000	2250	2500	2800	3000	3300	3600	
	•	-	-	-	61.5	61.5	63.0	63.0	
Звуковое давление	(dBA) L	-	-	-	58.5	58.5	60.0	60.0	
о-/	A	59	61	62	61.5	61.5	62.5	64.5	
	E	54	56	57	56.5	56	57.5	59.5	

Размеры (мм)

Mod. NRL			Vers.	2000	2250	2500	2800	3000	3300	3600	
D	()	-	° - L	-	-	-	2450	2450	2450	2450	
Высота	(mm)	C	A - E	2450	2450	2450	2450	2450	2450	2450	
	()		° - L				2200	2200	2200	2200	
Ширина	(mm)	A	A - E	2200	2200	2200	2200	2200	2200	2200	
ГС	()	D	° - L	-	-	-	8100	8100	8100	8100	
Глубина	(mm)	В	A - E	6400	7250	8100	8100	8100	11100	11100	
Macca	(Kg)		° - L	-	-	-	5630	6020	6220	6420	
			A - E	4820	5240	5660	6060	6510	7590	7850	

NRL-C

Компрессорно-конденсаторные блоки Холодопроизводительность от 53 до 938 кВт Variable Multi Flow®

VMF

NS-C

Особенности

- С компрессорно-конденсаторные агрегаты:
 Опции вентиляторов (определяется при выборе конфигурации):
 - «°» Стандартный;
 - «М» увеличенного размера;
 - «J» с инверторным управлением двигателем.
- Модификации с насосным агрегатом и накопительным баком, оборудованные водяным фильтром, расходомером воды, расширительным резервуаром, устройством для заливки воды и электронагревателем защиты от замораживания.
- Микропроцессорная система управления:
- Контроль температуры воды на входе и возможность контроля температуры воды на выходе;
- Регулировка температуры конденсации при работе в летнем режиме с помощью управляющего сигнала напряжением 0-10 В в зависимости от давления в системе (при использовании системы DCPX);
- Автоматическое чередование работающих компрессоров и насосов в зависимости от времени наработки;
- Снижение производительности в случае предаварийных ситуаций;
- Датчики низкого и высокого давления (для типоразмеров 280-350, ТР3 доступный аксессуар);
- Автоматическая аварийная сигнализация перед полным отключением системы;
- Индикация сообщений на 4 языках;
- Индикация предыстории аварийных ситуаций.

Дополнительное оборудование

- AERSET: Устройство управления и контроля, которое позволяет изменить уставку температуры воды для чиллеров во время получения импульсного сигнала 0-10В по протоколу MODBUS.
 - Требует наличия дополнительно интерфейсов: AER485 или MODU-485A.
- ÁER485: RS-485 интерфейс для управления системой по протоколу MODBUS.
- AVX,VT: Вибропоглощающие опоры корпуса. Выбираются в соответствии с таблицей совместимости дополнительного оборудования.
- DCPX: Низкотемпературная система, обеспечивающая работу на охлаждение при наружной температуре менее 10°С (до -10°С). Система состоит из электронного блока, который меняет скорость вращения вентиляторов на основании значения давления конденсации. Система также обеспечивает функционирование холодильной машины при температуре воздуха, превосходящей 30°С до 42°С.
- DRE: Электронная система, уменьшающая пиковые значение тока приблизительно на 30%.
- Устанавливается на заводе-изготовителе.
- **GP:** Решетка, защищающая внешний теплообменник от повреждений.
- PGS: Система программирования ежедневного/еженедельного расписания работы с возможностью программирования (двух ежедневных циклов включения/выключения) и задания различных параметров на каждый день недели.

- RIF: Токовый фазовый компенсатор. Подключается параллельно с обмотками электромотора, позволяя при этом снижать потребляемый ток примерно на 10%. Устанавливается на заводе изготовителе, поэтому необходимость установки такой системы должна быть отражена в заказе на поставку оборудования.
- AERWEB300: опция AERWEB обеспечивающая дистанционное управление работой холодильных машин с помощью персонального компьютера и интернет соединения через стандартный браузер; 4 версии:
 - **AERWEB300-6:** веб-сервер для дистанционного управления максимум 6 установок через интерфейс RS485;
- AERWEB300-18: веб-сервер для дистанционного управления максимум 18 установок через интерфейс RS485;
- AERWEB300-6G: веб-сервер для дистанционного управления максимум 6 установок через интерфейс RS485 со встроенным модемом GPRS;
- AERWEB300-18G: веб-сервер для дистанционного управления максимум 18 установок через интерфейс RS485 со встроенным модемом GPRS.
- DUALCHILLER: Упрощенная система управления, предназначенная для включения/выключения двух холодильных машин, входящих в единую систему и оборудованных контроллером GR3 компании AERMEC. Включение/выключение происходит так, как если бы имелась только одна холодильная машина.

- MULTICHILLER: Система управления, предназначенная для включения/отключения отдельных холодильных машин, входящих в единую систему и подключенных параллельно. При этом поддерживается постоянный расход воды во всех испарителях.
- TRX1: Металлическая заглушка, применяемая вместо пластиковой и закрывающая отверстия в накопительном баке, предназначенные для установки электронагревательного элемента.
- **PRM1:** ОБОРУДОВАНИЕ, УСТАНАВЛИВАЕМОЕ НА ЗАВОДЕ ИЗГОТОВИТЕЛЕ. Это ручное реле давления, электрически подключенное параллельно с существующим автоматическим реле высокого давления на стороне нагнетания компрессора.
- ТР3: Датчик высокого давления для индикации рабочего давления на дисплее, выдает предварительный сигнал тревоги в случае высокого рабочего давления (только для типоразмеров 280-350).

СОВМЕСТИМ с системой управления VMF. Пожалуйста, обращайтесь к соответствующей документации.

Технические характеристики модификации «С»

Модель NRL C	U.M.	Модиф.	280	300	330	350	500	550	600	650	700
		0	-	-	-	-	100	106	130	141	161
Va. a. a. a. maa. a.	(1444)	L	55	65	70	83	90	96	116	131	148
Холодопроизводительность	(kW)	Α	-	-	-	-	101	107	133	147	168
		Е	59	67	76	85	93	98	121	133	155
		0	-	-	-	-	35,1	38,5	46,3	54,4	60,5
Поли потробления поличесть	(kW)	L	20,5	22,8	26,3	28,7	38,8	42,9	51,4	58,1	65,4
Полн. потребляемая мощность		Α	-	-	-	-	30,5	34,5	40,5	45,0	52,8
		Е	17,0	19,6	22,0	25,3	33,4	37,0	44,7	52,1	57,1

ОХЛАЖДЕНИЕ

 Темп. испарения
 5°C;

 Темп. наружного воздуха
 35 °C;

Размеры (мм)

Модель NRL			Модиф.	280	300	330	350	500	550	600	650	700
Высота	(mm)	Α	Bce	1606	1606	1606	1606	1875	1875	1875	1875	1875
Ширина	(mm)	В	Все	1100	1100	1100	1100	1100	1100	1100	1100	1100
Глубина	(22.22)		° - L	2450	2450	2450	2450	2950	2950	2950	2950	2950
тлуоина	(mm)	C	A - E	2450	2950	2950	2950	2950	2950	2950	2950	3950
140000 110000	(I/=)		° - L	675	684	688	704	868	872	968	983	1091
Масса нетто	(Кг)		A - E	686	751	761	767	955	959	1142	1155	1323

Технические характеристики модификации «С»

Модель NRL-C		Модиф.	0750	0800	0900	1000	1250	1404	1504	1655	1800											
		0	196	220	241	269	316	352	391	430	469											
Va. a. a. a. maa. u. a.	(kW)	L	179	198	219	245	283	315	351	383	410											
Холодопроизводительность	(KVV)	Α	201	227	252	282	335	372	415	463	497											
		Е	185	211	233	260	311	343	382	426	454											
		0	70	81	95	108	125	147	166	182	194											
Поли потробляющей изинесть	(kW)	(L\\\)	(L\\\)	(k\\\)	(k\\\)	(k\\\)	(k\\\)	(kW)	(kW)	(kW)	(kW)	(kW)	L	76	91	105	117	139	163	183	199	216
Полн. потребляемая мощность		Α	62	71	83	95	109	127	145	152	165											
		Е	69	78	91	103	118	138	158	169	184											

Размеры (мм)

Модель NRL			Модиф.	750	800	900	1000	1250	1400	1500	1650	1800
Высота	(mm)	Α	° - L	1975	1975	1975	1975	1975	2450	2450	2450	2450
Ширина	(mm)	В	° - L	1500	1500	1500	1500	1500	2200	2200	2200	2200
Глубина	(mm)	С	° - L	4350	4355	4355	5355	5355	4250	4250	4250	4250
Масса нетто	(Кг)		0	1382	1730	1860	2015	2135	2765	2960	3055	3160

Технические характеристики модификации «С»

Модель NRL-C	U.M.	Модиф.	*2000	*2250	*2500	*2800	*3000	*3300	*3600
		0	-	-	-	704	782	860	938
V	(1.3.4.0	L	-	-	-	630	702	766	820
Холодопроизводительность	(kW) -	A	564	617	670	744	830	926	994
		Е	520	571	622	686	764	852	908
		0	-	-	-	284	322	350	374
По	(1.3.4.0	L	-	-	-	314	354	384	416
Полн. потребляемая мощность	(kW) -	A	190	204	218	254	290	304	330
		E	206	221	236	276	316	338	368

Размеры (мм)

Модель NRL		U.M.	Модиф.	2000	2250	2500	2800	3000	3300	3600
Directo		(ma ma)	° - L	-	-	-	2450	2450	2450	2450
Высота	C	(mm)	A - E	2450	2450	2450	2450	2450	2450	2450
Himming	٨	(ma ma)	° - L				2200	2200	2200	2200
Ширина	Α	(mm)	A - E	2200	2200	2200	2200	2200	2200	2200
Глубина	В	(ma ma)	° - L	-	-	-	8100	8100	8100	8100
тлубина	D	(mm)	A - E	6400	7250	8100	8100	8100	11100	11100
Managaria		(1/-)	° - L	-	-	-	5630	6020	6220	6420
Масса нетто		(Kr)	A - E	4820	5240	5660	6060	6510	7590	7850

NRL FC

Холодильные машины, агрегатированные системой «непосредственного охлаждения», с воздушным охлаждением и осевыми вентиляторами с холодопроизводительностью от 58 до 174 кВт

R410A

- ВЫСОКОЭФФЕКТИВНЫЕ МОДИФИКАЦИИ
- ВЫСОКОЭФФЕКТИВНЫЕ МОДИФИКАЦИИ С ПОНИЖЕННЫМ УРОВНЕМ ШУМА
- МОДИФИКАЦИИ:
- С ЦИРКУЛЯЦИОНЫМ НАСОСОМ
- ПИРКУЛЯПИОННЫМ НАСОСОМ И НАКОПИТЕЛЬНЫМ БАКОМ
- ДВА ХОЛОДИЛЬНЫХ КОНТУРА

Характеристики

Холодильные машины этой серии с набжены дополнительными воздуховодяными теплообменниками. предназначенными для использования наружного воздуха в процессе работы на охлаждение, что обеспечивает значительную экономию энергии. Такой режим, называемый режимом непосредственного охлаждения или «свободного ходода», может использоваться как вспомогательный, одновременно с работой компрессоров, или как основной, если позволяет температура наружного воздуха (если температура воды, возвращаемой всистему, выше, чем температура наружного воздуха). Режим непосредственного охлаждения обеспечивает значитель-. ное повышение коэффициента полезного действия системы – до 10 раз по сравнению с обычными холодильными машинами, работа которых основана только на использовании компрессоров.

- 9 типоразмеров
- Хладагент R410A
- 2 холодильных контура
- Высокая эффективность даже при неполнойтепловой нагрузке.
- Конструкция теплообменников, оптимизированная для применения хладагента R410A, обладающего прекрасными свойствами теплообмена.
- Высокоэффективные компрессоры спиральноготипа
- Вентиляторы аксиального типа с пониженным уровнем шума

- Высокопрочный корпус с антикоррозион- с электронным терморегулирующим вентилем ным покрытием из полиэстера
- Работа в режиме охлаждения при температуревоздуха до 44 ° С

Режимы работы:

полное непосредственное охлаждение наиболее экономичный режим эксплуатации, при котором работают только вентиляторы, а охлаждение осуществляется за счет наружного воздуха частичное непосредственное охлаждение с работающими компрессорами, при котором часть холодопроизводительности обеспечивается наружным воздухом охлаждение за счет работы компрессоров, полностью обеспечивающих холодопроизводительность (обычный режим работы холодильных машин)

Модификации:

- повышенной эффективности
- повышенной эффективности с пониженным уровнем шума
- работающие без применения раствора гликоля с насосным агрегатом (высокого давления, срезервным насосом или без него)
- с насосным агрегатом и накопительным бакомемкостью 300 Λ (500 Λ для типоразмера 750), оборудованные водяным фильтром, датчикомпротока воды, расширительным резервуаром, устройством для заливки воды иэлектронагревателем защиты от замораживания.

- с вентиляторами увеличенного размера
- Микропроцессорное управление компрессорами ивентиляторами во все трех режимах работы (приполном непосредственном охлаждении, частичном непосредственном охлаждении и только за счет компрессоров)
- Индикация на дисплее на четырех языках
- Упрощенная панель дистанционного управления, соединяемая с холодильной машиной экранированным кабелем длиной до 50 м, обеспечивающая управление всеми основными функциями и аварийную сигнализацию
- Высокоэффективные воздуховодяные теплообменники режима непосредственного охлаждения с гладкими трубками и развитым оребрением
- •Трехпозиционный вентиль в контуре циркуляцииводы для переключения в режимнепосредственного охлаждения
- Датчики высокого и низкого давления
- Система регулировки скорости вращения вентиляторов, обеспечивающая работу холодильной машины при низких температурах наружного воздуха и регулирующая холодопроизводительность в режиме непосредственного охлаждения.

Дополнительное оборудование

АЕR485: Интерфейс (стандарта RS485) для обмена данными через сеть телеметрического управления системами здания по протоколу MODBUS.

VT: Комплект виброизолирующих опор корпуса, монтируемых на стальном основании холодильной машины.

DRE: Электронная система, уменьшающая пиковые значения тока. Устанавливается на заволе изготовителе.

GP: Решетка, защищающая внешний теплообменник от повреждений.

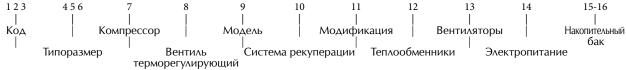
PGS: Программатор ежедневного/еженедельного расписания работы. Используется для задания двух моментов времени на каждые сутки (то есть, двух циклов включения/отключения). Для каждого дня недели можно задать различные программы работы.

RIF: Система перефазировки тока, подключаемая параллельно электромотору и снижающая пусковой Устанавливается на заводеизготовителе, поэтому необходимость установки такой системы должна быть отражена в заказе на поставку оборудования.

AERWEB30: Система, обеспечивающая дистанционное управление работой холодильных машин с персонального компьютера с последовательным подключением. При использовании дополнительного модуля AERMODEM управление может осуществляться по телефонной сети, а использовании при МΟΔVΛЯ AERMODEMGSM с мобильного телефона стандарта GSM. Система AERWEB позволяет управлять работой до 9 холодильных машин, каждая из которых

должна быть оборудована дополнительными устройствами AER485 или AER485P2

DUALCHILLER: Упрощенная система управления, предназначенная для включения/ выключения двух холодильных машин, входящих в единую систему и оборудованных устройствами GR3 компании AERMEC. Включение/выключение происходит так, как если бы имелась только одна холодильная машина.


MULTICHILLER: Система управления, предназначенная для включения/выключения отдельных холодильных машин, входящих в единую систему и подключенных параллельно. При этом поддерживается постоянный расход воды во всех испари-

		Совместимос	ть дополн	ительного	оборудова	ания				
Модель NRL	Модиф.	280	300	330	350	500	550	600	650	700
AER485	Bce	✓	~	~	~	~	~	~	~	~
DUALCHILLER	Bce	/	~	~	~	~	~	~	~	~
MULTICHILLER	Все	/	~	~	~	~	~	~	~	~
PGS	Bce	V	~	~	~	~	~	~	~	~
AERWEB30	Bce	V	~	~	~	~	~	~	~	~
VT	00 - P3 - P4	17	17	17	17	13	13	22	22	22
V 1	03 - 04	13	13	13	13	10	10	22	22	22
DRE	Bce	281	301	331	351	501	551	601	651	701
GP	Все	4	4	4	4	2(x2)	2(x2)	2(x3)	2(x3)	2(x3)
RIF	Bce	50	50	50	51	52	52	53	53	53
PRM1-PRM2	Bce	✓	~	/	✓	~	~	~	~	~

Выбор модификации

Комбинируя различные опции, можно подобрать такую модель серии NRL, которая наиболее полно отвечает требованиям заказчика.

Код:

NRL

Типоразмер:

O28, 030, 033, 035, 050, 055, 060, 065, 070

Компрессоры:

О стандартные, для хладагента R410A

Терморегулирующий вентиль:

° - стандартный, механический

Y - механический, для охлаждения воды с +4°C до -6°C

X - электронный, для охлаждения воды до -6 $^{\circ}$ C

Модель:

F - с системой непосредственного охлаждения

В - с системой непосредственного охлаждения, без

применения раствора гликоля

Система рекуперации тепла:

о - без системы рекуперации

Модификация:

А - повышенной эффективности

Е - повышенной эффективности, с пониженным уровнем шума

Теплообменники:

° - алюминиевые

R - медные

S - медные, луженные

V - с защитным покрытием из полиэстера

Вентиляторы:

° - стандартные

М увеличенного размера

Электропитание:

° - 400 В, трехфазное, 50 Гц, с термомагнитными размыкателями цепи

1 - 230 В, трехфазное, 50 Гц, с термомагнитными размыкателями цепи

2 - 500 В, трехфазное, 50 Гц, с термомагнитными размыкателями цепи

Накопительный бак:

00 без бака

03 с баком и одним насосом высокого давления

04 с баком и резервным насосом высокого давления

РЗ без бака, с насосом высокого давления

Р4 без бака, с насосом высокого давления и резервным насосом

Внимание:

стандартные модификации обозначаются символом °

Пример обозначения: NRL0350°F°A°°°00 это холодильная машина NRL типоразмера 035 с механическим терморегулирующим вентилем, с системой непосредственного охлаждения, высокоэффективное исполнение,, с алюминиевым теплообменником конденсатора, стандартными вентиляторами, электропитанием от трехфазного напряжения 400 В, 50 Гц, без накопительного бака и насоса.

Технические характеристики

Mod. NRL Free Cooling		Vers.	280	300	330	350	500	550	600	650	700
/	(1-347)	A	-	-	-	-	99.0	104.0	132.0	144.0	159.0
Солодопроизводительность	(kW)	E	59.0	65.0	74.0	82.0	91.0	95.0	119.0	130.0	147.0
7	(1.147)	A	-	-	-	-	33.7	37.3	44.5	51.7	60.8
Толная потребляемая мощность	(kW)	E	18.1	21.8	24.0	28.3	37.0	40.0	49.2	59.8	65.8
	(1.1)	A	-	-	-	-	17030	17890	22700	24770	27350
Расход воды	(l/h)	E	10150	11180	12730	14100	15650	16340	20470	22360	25280
	(1 D.)	A	-	-	-	-	60	69	78	73	87
Падение давления	(kPa)	E	63	53	66	58	51	58	63	60	74
	(717 (717)	A	-	-	-	-	2.93	2.79	2.96	2.79	2.62
нергетическая эффективность	(W/W)	E	3.26	2.98	3.08	2.90	2.46	2.37	2.42	2.17	2.23
		A	-	-	-	-	61	65	79	84	101
абочий ток	(A)	E	32	38	41	51	67	70	87	97	109
олодопроизводительность	(kW)	A/E	58.0	68.0	83.0	85.0	103.0	104.0	137.0	159.0	174.0
Толная потребляемая мощность	(kW)	A/E	1.05	1.05	1.35	1.35	2.65	2.65	3.9	3.9	5.4
		A	-	-	-	-	17030	17890	22700	24770	27350
асход воды	(l/h)	E	10150	11180	12730	14100	15650	16340	20470	22360	25280
		A	-	-	-	-	79.2	90.1	107.9	107.2	124.1
Тадение давления	(kPa)	E	95.6	69.1	85.8	82.2	67	75	88	87	106
Энергетическая эффективность	(W/W)	A/E	55.24	64.76	61.48	62.96	38.87	39.25	35.13	40.77	32.22
Рабочий ток	(A)	A/E	$-\frac{33.21}{4.6}$	4.6	5.9	5.9	5.9	5.9	8.7	8.7	11.6
Лаксимальный ток (FLA)	(A)	A/E	$-\frac{16}{46}$	53	58	63	76	81	100	112	122
Тусковой ток (LRA)	(A)	A/E	155	184	190	200	214	220	232	243	261
Компрессоров	(no./no.)	A/E	$\frac{133}{2/2}$	2/2	2/2	2/2	3/2	3/2	4/2	4/2	4/2
рессоров		A			-	-	50	50	51	52	55
вуковое давление	db(A)	E	42	42	43	44	44	44	44	45	50
рубопроводные соединения	Ø	(00)	$-\frac{42}{2"1/2}$	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2
Тотребляемая мощность	(kW)	A/E	$-\frac{2.1/2}{0.9}$	0.9	1.2	1.2	2.5	2.5	3.75	3.75	5.25
Тотреоляемая мощность Потребляемый ток	(A)	A/E A/E	$-\frac{0.9}{3.9}$	3.9	5.2	5.2	5.6	5.6	8.4	8.4	11.3
тотреоллемый ток	(11)	A/E A		3.9	-	- 3.2	32500	32500	50000	49000	56000
асход воздуха	(m3/h)	E	20000	19000	25000	25000	23400	24100	33500	35300	47600
<u> </u>		Ľ		19000	23000	23000	23400	24100	33300	33300	4/000
NRL Комплект гидравлического о	борудования	1									
мкость бака	(1)	A/E	300	300	300	300	300	300	300	300	300
Тотр. мощность	(1.147)	A /E					1.05	1.05			
асоса умеренного давления	(kW)	A/E	1.5	1.5	1.5	1.5	1.85	1.85	3	3	3
Тотр. ток							_	_			
асоса умеренного давления	(A)	A/E	3.6	3.6	3.6	3.6	5	5	5.7	5.7	5.7
Статическое давление (в режиме	9	A		-	-	-	144	132	147	137	99
	kPa	E	$-{124}$	132	110	118	160	151	174	169	131
хлаждения компрессором)											
охлаждения компрессором) Статическое давление (в режиме	kPa	A		_	-	_	123	109	114	122	77

Указанные технические характеристики относятся к следующим условиям:

Охлаждение:

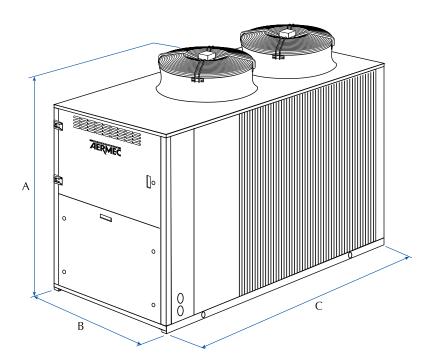
- температура воды на выходе 7 °C;

- температура наруаеного воздуха 35 °C;

- разность температур t = 5 °C.

Звуковое давление измерено в свободном пространстве на расстоянии 10 м при коэффициенте направленности, равном 2 (в соответствии со стандартом ISO 3744).

— электропитание – 400V


Режим непосредственного охлаждения:

- температура воды на входе 15 °C;

- температура наружного воздуха 2 °C;

- номинальный расход воды;

- компрессоры отключены.

Mod.NRL Free C	Cooling		Модиф.	280	300	330	350	500	550	600	650	700
Высота	(mm)	A	A/E	1606	1606	1606	1606	1875	1875	1875	1875	1875
Ширина	(mm)	В	A/E	1100	1100	1100	1100	1100	1100	1100	1100	1100
Глубина	(mm)	С	A/E 00	2950	2950	2950	2950	3200	3200	3950	3950	3950
Глубина	(mm)	С	A/E 03-04 A/E P3-P4	2950	2950	2950	2950	3200	3200	3950	3950	3950
Macca	(kg)	A	A/E 00	838	908	913	922	1079	1083	1386	1460	1540

Холодильные машины, агрегатированные системой «непосредственного охлаждения», с воздушным охлаждением и осевыми вентиляторами с холодопроизводительностью от 177 до 452 кВт

R410A

- ВЫСОКОЭФФЕКТИВНЫЕ МОДИФИКАЦИИ
 ВЫСОКОЭФФЕКТИВНЫЕ МОДИФИКАЦИИ С ПОНИЖЕННЫМ УРОВНЕМ ШУМА
- МОДИФИКАЦИИ:
- С ЦИРКУЛЯЦИОНЫМ НАСОСОМ

- С ЦИРКУЛЯЦИОННЫМ НАСОСОМ И НАКОПИТЕЛЬНЫМ БАКОМ • ДВА ХОЛОДИЛЬНЫХ КОНТУРА

Характеристики

Холодильные машины этой серии снабжены дополнительными воздухооводяными теплообменниками, предназначенными для использоооменниками, предназначенными для использования наружного воздуха в процессе работы на охлаждение, что обеспечивает значительную экономию энергии. Такой режим, называемый режимом непосредственного охлаждения или «свободного холода», может использоваться как вспомогательный, одновременно с работой компрессоров, или как основной, если позволяет температура наружного воздуха (если температура воды, возвращаемой в систему, выше, чем температура наружного воздуха). Режим непо-средственного охлаждения обеспечивает значительное повышение коэффициента полезного действия системы — до 10 раз по сравнению с обычными холодильными машинами, работа которых основа только на использовании компрессоров. 9 типоразмеров Хладагент R410A

- 2 холодильных контура Высокая эффективность даже при неполной тепловой нагрузке
- Конструкция теплообменников, оптимизирован-ная для применения хладагента R410A, обладающего прекрасными свойствами теплообмена
- Высокоэффективные компрессоры спирального
- Вентиляторы аксиального типа с пониженным

- Высокопрочный корпус с антикоррозионным
- покрытием из полиэстера Работа в режиме охлаждения при температуре воздуха до 44 °C

- полное непосредственное охлаждение
- наиболее экономичный режим эксплуатации, при котором работают только вентиляторы, а охлаждение осуществляется за счет наружного возлуха
- частичное непосредственное охлаждение с работающими компрессорами, при котором часть холодопроизводительности обеспечивается
- наружным воздухом охлаждение за счет работы компрессоров, полностью обеспечивающих холодопроизводительность (обычный режим работы холодиль ных машин)

Модификации:

- повышенной эффективности повышенной эффективности с пониженным уровнем шума
- работающие без применения раствора гликоля с насосным агрегатом (высокого давления, с резервным насосом или без него)
- с насосным агрегатом и накопительным баком емкостью 700 л (500 л для типоразмера 750),
- оборудованные водяным фильтром, датчиком протока воды, расширительным резервуаром, устройством для заливки воды и электронагре-

вателем защиты от замораживания

- с электронным терморегулирующим вентилем вентиляторами с инверторным управлением двигателем
- Микропроцессорное управление компрессорами и вентиляторами во все трех режимах работы (при полном непосредственном охлаждении, частичном непосредственном охлаждении и только за счет компрессоров)
- Индикация на дисплее на четырех языках Упрощенная панель дистанционного управления, соединяемая с холодильной машиной экраниро-ванным кабелем длиной до 50 м, обеспечивающая управлениевсеми основными функциями и аварийную сигнализацию
- Высокоэффективные воздухооводяные теплообменники режима непосредственного охлаждения с гладкими трубками и развитым оребре-
- Трехпозиционный вентиль в контуре циркуляции воды для переключения в режим непосредственного охлажления
- Датчики высокого и низкого давления
- Система регулировки скорости вращения венти-ляторов, обеспечивающая работу холодильной машины при низких температурах наружного воздуха и регулирующая холодопроизводительность в режиме непосредственного охлаждения.

Дополнительное оборудование

AER485: Интерфейс (стандарта RS485) для обмена данными через сеть телеметрического управления системами здания по протокоw MODBUS.

VI: Комплект виброизолирующих опор корпуса, монтируемых на стальном основании холодильной машины.

DRE: Электронная система, уменьшающая пиковые значения тока. Устанавливается на заволе изготовителе.

GP: Решетка, защищающая внешний теплооб-менник от повреждений.

PGS: Программатор ежедневного/еженедельного расписания работы. Используется для задания двух моментов времени на каждые сутки (то есть, двух циклов включения/ отключения). Для каждого дня недели

можно задать различные программы работы. RIF: Система перефазировки тока, подключаемая параллельно электромотору и снижающая пусковой ток. Устанавливается на заводе изготовителе, поэтому необходимость установки такой системы должна быть отражена в заказе на поставку оборудования.

AERWEB30: Система, обеспечивающая дистанционное управление работой холодильных машин с персонального компьютера с последовательным подключением. При использовании дополнительного модуля AERMODEM управление может осуществляться по телефонной сети, а при использовании модуля AERMODEMGSM о с мобильного телефона стандарта GSM. Система AERWEB позволяет управлять работой до 9 холодильных машин,

каждая из которых должна быть оборудована дополнительными устройствами AER485 или AFR485P2

DUALCHILLER: Упрощенная система управления, предназначенная для включения/выключения двух холодильных машин, входящих в единую систему и оборудованных устройствами GR3 компании AERMEC. Включение/ выключение происходит так, как если бы

имелась только одна холодильная машина. **MULTICHILLER:** Система управления, предназначенная для включения/выключения отдельных холо дильных машин, входящих в единую систему и подключенных параллельно. При этом поддерживается постоянный расход воды во всех испарителях.

		Совм	естимос	ть дополні	тельного (оборудова	ния			
Модель NRL	Модиф.	750	800	900	1000	1250	1400	1500	1650	1800
AER485	Bce	V	V	~	~	~	~	~	~	~
DUALCHILLER	Bce	V	V	~	~	~	~	~	~	~
MULTICHILLER	Bce	V	V	~	~	~	~	~	~	~
PGS	Bce	~	V	~	~	~	~	~	~	~
AERWEB30	Bce	~	V	~	~	~	~	~	~	~
VT	00 - P3 - P4	23								
V 1	03 - 04	23								
	00		739	739	745	748	752	757	761	766
AVX	P3 - P4		741	744	747	750	754	758	763	763
	03 - 04		740	743	746	749	753	753	762	762
DRE	Bce	751	801	901	1001	1251	1401	1501	1651	1801
GP	Bce	10 (x3)	260	260	260	350	350	350	500	500
RIF	Bce	53	88	90	92	92	93	94	94	94
PRM1-PRM2	Bce	<u> </u>	<u> </u>	~	~	~	~	~	~	V

Выбор модификации

Комбинируя различные опции, можно подобрать такую модель серии NRL, которая наиболее полно отвечает требованиям заказчика.

Кодовые обозначения опций:

Код: NRL

Типоразмер: О75, 080, 090, 100, 125, 140, 150, 165, 180 Компрессоры:

O - стандартные, для хладагента R410A

Терморегулирующий вентиль:

стандартный, механический

Y - механический, для охлаждения воды с +4°C до -6°C

электронный, для охлаждения воды до -6 °C

Модель:

- с системой непосредственного охлаждения

с системой непосредственного охлаждения, без примене ния раствора гликоля

Система рекуперации тепла:

- без системы рекуперацииD - с пароохладителем

Модификация:

А – повышенной эффективности Е – повышенной эффективности, с пониженным уровнем шума

Теплообменники:

алюминиевые

R - медные

- медные, луженные

V с защитным покрытием из полиэстера

Вентиляторы:

- стандартные

J - с инверторным управлением

Электропитание:

400 В, трехфазное, 50 Гц, с термомагнитными размыкателями цепи

500 В, трехфазное, 50 Гц, с термомагнитными размыкателями цепи (для подбора DCPX обращайтесь к представителю AERMEC) Накопительный бак:

00 - без бака

03 - с баком и одним насосом высокого давления

04 - с баком и резервным насосом высокого давления

Р3 - без бака, с насосом высокого давления

Р4 - без бака, с насосом высокого давления и резервным

Внимание:

стандартные модификации обозначаются символом °

Пример расшифровки кодового обозначения:

NRL075°F°A°°°00 это холодильная машина NRL типоразмера 075 с механическим терморегулирующим вентилем, с системой непосредственного охлаждения, высокоэффективное исполнение, с алюминиевым теплообменником конденсатора, стандартными вентиляторами, электропитанием от трехфазного напряжения 400 В, 50 Гц, без накопительного бака и насоса

Mod. NRL Free Cooling		Vers.	750	800	900	1000	1250	1400	1500	1650	1800
	(1.347)	A	191	210	229	247	310	337	364	430	452
Холодопроизводительность	(KW)	E	177	196	216	228	289	310	331	400	421
	(1-347)	A	69.6	75	89	103	114	136	157	159	175
Полная потребляемая мощность	(KW)	Е	76.4.	80	93	109	120	145	169	169	186
D	(l/h)	A	32850	36120	39390	42480	53320	57960	62610	73960	77740
Расход воды	(1/11)	Е	30440	33730	37110	39210	49670	53260	56850	68770	72330
Пология доплагия	(kPa)	<u>A</u>	103	77	82	81	92	98	83	104	107
Падение давления	(Kra)	Е	89	68	73	69	80	84	70	90	93
Энергетическая эффективность	(347/347)	<u>A</u>	2.75	2.81	2.58	2.41	2.72	2.48	2.31	2.70	2.58
энергетическая эффективность	(E	2.32	2.46	2.33	2.09	2.40	2.14	1.95	2.37	2.26
Рабочий ток	(A)	<u>A</u>	123	144	169	195	208	252	296	298	317
т абочий ток	(A)	Е	135	149	174	203	217	265	312	310	332
Холодопроизводительность	(kW)	<u>A</u>	187	182	206	229	257	291	326	399	440
лолодопроизводительность	(KVV)	E		178	201	223	263	288	314	396	443
Полная потребляемая мощность	(kW)	A E	5.4	7.5	7.5	7.5	11.0	11.0	11.0	14.5	14.5
D	(1/1.)	A	32850	36120	39390	42840	53320	57960	62610	73960	77740
Расход воды	(l/h)	Е	30440	33730	37110	39210	49670	53260	56850	68770	72330
	(l-D-)	A	156.3	105	110	110	123	131	117	140	145
Падение давления	(kPa)	Е	134	93	99	94	106	110	94	117	120
EER	(W/W)	A	34.63	24.30	27.48	30.53	23.34	26.47	29.61	27.48	30.32
	` ′	Е		23.76	26.76	29.76	23.89	26.19	28.50	27.33	30.58
Рабочий ток	(A)	A/E	11.6	15	15	15	22	22	22	30	30
Максимальный ток (FLA)	(A)	A/E	144	177	199	221	274	303	332	373	406
Пусковой ток (LRA)	(A)	A/E	320	352	408	430	542	512	541	641	674
Компрессоров/контуров	(no./no.)	A/E	4/2	4/2	4/2	4/2	4/2	5/2	6/2	6/2	6/2
3	JL (A)	A	55	56.5	56.5	56.5	59.5	59.0	58.5	60.0	62.0
Звуковое давление	db(A)	Е	50	50.5	50.5	50.5	53.5	53.0	52.5	54.00	56.0
Трубопроводные соединения	Ø	(00)	2"1/2	3"	3"	3"	4"	4"	4"	4"	4"
Dagya , pag , pag	(m3/h)	A	56000	79600	78800	78000	115200	114000	112800	155200	153600
Расход воздуха	(1113/11)	E	46500	55700	55200	55800	80600	79800	80700	108600	109800
Комплект гидравлическог	o oponya	ования									
Емкость бака	(l)	A/E	500	700	700	700	700	700	700	700	700
	` '	A/E									
Потр. мощность насоса умеренного давления	(KVV)		5.5	6.5	6.5	6.5	8.6	8.6	8.6	12.3	12.3
Потр. ток насоса умеренного давления	(A)	A/E A/E	11	11.0	11.0	11.0	14.6	14.6	14.6	21.2	21.2
Статическое давление (в режиме			177	220	2 10	204	242	223	224	192	182
охлаждения компрессором)	(kPa)	A	200	233	222	223	262	250	255	214	206
Статическое давление (в режиме		E	119	194	184	177	214	195	195	165	155
непосредств. охлаждения)	(kPa)	A	150	211	202	203	245	234	242	197	189
	(-12 4)			_							

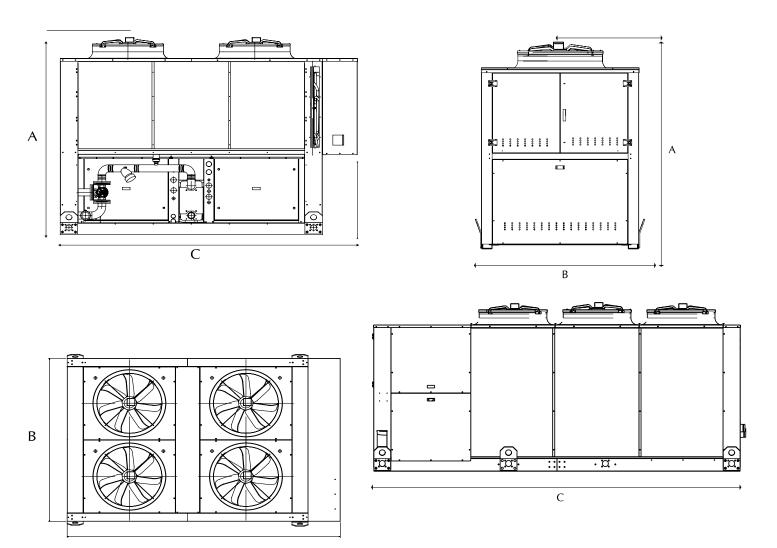
Указанные технические характеристики относятся к следующим условиям:

Охлаждение:

температура воды на выходе 7 °C;
температура наружного воздуха 35 °C;
разность температур t = 5 °C.

Звуковое давление измерено в свободном пространстве на расстоянии 10 м при коэффициенте направленности, равном 2 (в соответствии со стандартом ISO 3744).

— электропитание — 400В


Режим непосредственного охлаждения:

- температура воды на входе 15 °C;

- температура наружного воздуха 2 °C;

- номинальный расход воды;

- компрессоры отключены.

Модель NRL Free C	Cooling		Модиф.	750	800	900	1000	1250	1400	1500	1650	1800
Высота	(mm)	Α	A/E	1955	2450	2450	2450	2450	2450	2450	2450	2450
Ширина	(mm)	В	A/E	1500	2200	2200	2200	2200	2200	2200	2200	2200
Глубина	(mm)	С	A/E	4350	3400	3400	3400	4250	4250	4250	5750	5750
Macca	(kg)	A	A/E	1889	2470	2650	2840	3120	3380	3660	4220	4420

NRL FC

2000/3600 Только

только охлаждение

R410A

Холодильные машины, агрегатированные системой «непосредственного охлаждения», с воздушным охлаждением и осевыми вентиляторами с холодопроизводительностью от 446 до 904 кВт

- ВЫСОКОЭФФЕКТИВНЫЕ МОДИФИКАЦИИ
 ВЫСОКОЭФФЕКТИВНЫЕ МОДИФИКАЦИИ С ПОНИЖЕННЫМ УРОВНЕМ ШУМА
- МОДИФИКАЦИИ:

- С ЦИРКУЛЯЦИОННЫМ НАСОСОМ И НАКОПИТЕЛЬНЫМ БАКОМ
● 4 ХОЛОДИЛЬНЫХ КОНТУРА

- С ЦЙРКУЛЯЦИОНЫМ НАСОСОМ

Характеристики

- 7 типоразмеров
- Хладагент R410A
- 4 холодильных контура
- Высокая эффективность даже при неполной тепловой нагрузке
- Конструкция теплообменников, оптимизированная для применения хладагента R410A, обладающего прекрасными свойствами теплообмена
- Высокоэффективные компрессоры спирального типа
- Вентиляторы аксиального типа с пониженным уровнем шума
- Высокопрочный корпус с антикоррозионным покрытием из полиэстера
- Работа в режиме охлаждения при температуре воздуха до 44 °C

Режимы работы:

- полное непосредственное охлаждение наиболее экономичный режим эксплуатации, при котором работают только вентиляторы, а охлаждение осуществляется за счет наружного воздуха
- частичное непосредственное охлаждение с работающими компрессорами, при котором часть холодопроизводительности

обеспечивается наружным воздухом

 охлаждение за счет работы компрессоров, полностью обеспечивающих холодопроизводительность (обычный режим работы холодильных машин)

Модификации:

- повышенной эффективности
- повышенной эффективности с ониженным уровнем шума
- работающие без применения раствора гликоля с насосным агрегатом (высокого давления, с резервным насосом или без него)
- с насосным агрегатом и накопительным баком емкостью 700 л, оборудованные водяным фильтром, датчиком протока воды, расширительным резервуаром, устройством для заливки воды и электронагревателем защиты от замораживания
- с электронным терморегулирующим вентилем вентиляторами с инверторным управлением двигателем
- Микропроцессорное управление компрессорами и вентиляторами во всех трех режимах работы (при полном непосредственном охлаждении, частичном

- непосредственном охлаждении и только за счет компрессоров)
- Индикация на дисплее на четырех языках
- Упрощенная панель дистанционного управления, соединяемая с холодильной машиной экранированным кабелем длиной до 50 м, обеспечивающая управление всеми основными функциями и аварийную сигнализацию
- Высокоэффективные воздуховодяные теплообменники режима непосредственногоохлаждения с гладкими трубками и развитым оребрением
- Трехходовой вентиль в контуре циркуляции воды для переключения в режим непосредственного охудувания
- непосредственного охлаждения

 Датчики высокого и низкого давления
- Система регулировки скорости вращения вентиляторов, обеспечивающая работу холодильной машины при низких температурах наружного воздуха и регулирующая холодопроизводительность в режиме непосредственного охлаждения.

Дополнительное оборудование

AER485: Интерфейс (стандарта RS485) для обмена данными через сеть телеметрического управления системами здания по протоколу MODBUS.

АVX: Пружинные вибропоглощающие опоры корпуса; выбираются в соответствии с таблицей совместимости дополнительного оборудования.

DRÉ: Электронная система, уменьшающая пиковые значения тока. Устанавливается на заводе изготовителе.

GP: Решетка, защищающая внешний теплообменник от повреждений.

PGS: Программатор ежедневного/еженедельного расписания работы. Используется для задания двух моментов времени на каждые сутки (то есть, двух циклов включения/отключения). Для каждого дня недели можно

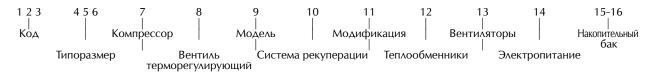
задать различные программы работы.

RIF: Система перефазировки тока, подключаемая параллельно электромотору и снижающая пусковой ток. Устанавливается на заводеизготовителе, поэтому необходимость установки такой системы должна быть отражена в заказе на поставку оборулования.

жена в заказе на поставку оборудования. **AERWEB30:** Система, обеспечивающая дистанционное управление работой холодильных машин с персонального компьютера с последовательным подключением. При использовании дополнительного модуля AERMODEM управление может осуществляться по телефонной сети, а при использовании модуля AERMODEMGSM с мобильного телефона стандарта GSM. Система AERWEB позволяет управлять работой до 9 холодильных машин, каждая из которых должна быть оборудова-

на дополнительнымиустройствами AER485 или AER485P2.

DUALCHILLER: Упрощенная системауправления, предназначенная для включения/выключения двух холодильных машин, входящих в единую систему и оборудованных устройствами GR3 компании AERMEC. Включение/выключение происходит так, как если бы имелась только одна холодильная машина.


MULTICHILLER: Система управления, предназначенная для включения/выключения отдельных холодильных машин, входящих в единую систему и подключенных параллельно. При этом поддерживается постоянный расход воды во всех испарителях.

			Дополните	льное оборудов	ание	-		
Mod. NRL	Vers.	2000	2250	2500	2800	3000	3300	3600
AER485P1	Все	✓	✓	V	✓	✓	V	/
PGS	Все	✓	V	V	V	V	V	/
AERWEB30	Все	V	~	~	~	V	V	V
TRX1	Bce	V	V	V	V	V	V	V
GP	A - E	260 x 2	260 - 350	350 x 2	350 x 2	350 x 2	500 x 2	500 x 2
RIF	A - E	RIFNRL2000	RIFNRL2250	RIFNRL2500	RIFNRL2800	RIFNRL3000	RIFNRL3300	RIFNRL3600
PRM1/PRM2	Все	✓	V	V	/	/	V	✓
AVX (00)	A - E	770	776	782	788	794	801	801
AVX (03-04)	A - E	771	777	783	789	795	802	802
AVX (P3-P4)	A - E	772	778	784	790	796	803	803

Выбор модификации

Комбинируя различные опции, можно подобрать такую модель серии NRL, которая наиболее полно отвечает требованиям заказчика.

Кодовые обозначения опций:

Код: NRL

Типоразмер: 2000, 2250, 2500, 2800, 3000, 3300, 3600

Компрессоры:

O - стандартные, для хладагента R410A

Терморегулирующий вентиль:

стандартный, механический

Y - механический, для охлаждения воды с +4°C до -6 °C

X - электронный, для охлаждения воды до -6 °C

Модель:

F - с системой непосредственного охлаждения

В - с системой непосредственного охлаждения, без

применения раствора гликоля Система рекуперации тепла: - без системы рекуперации

D - с пароохладителем

Модификация:

A - повышенной эффективности E - повышенной эффективности, с пониженным уровнем шума Теплообменники:

- алюминиевые

R - медные

- медные, луженные

V - с защитным покрытием из полиэстера

Вентиляторы:

- стандартные

J - с инверторным управлением

Электропитание: ° - 400 В, трехфазное, 50 Гц, с термомагнитными размыкателями цепи

2 - 500 В, трехфазное, 50 Гц, с термомагнитными размыкателями цепи

Накопительный бак:

00 - без бака

03 - с баком и одним насосом высокого давления

04 - с баком и резервным насосом высокого давления

Р3 - без бака, с насосом высокого давления

Р4 - без бака, с насосом высокого давления и резервным насосом

Внимание:

стандартные модификации обозначаются символом °

Пример расшифровки кодового обозначения: NRL2000°F°A°°°00 это холодильная машина NRL типоразмера 2000 с механическим терморегулирующим вентилем, с системой непосредственного охлаждения, высокоэффективное исполнение, с алюминиевым теплообменником конденсатора, стандартными вентиляторами, электропитанием от трехфазного напряжения 400 В, 50 Гц, без накопительного бака и насоса

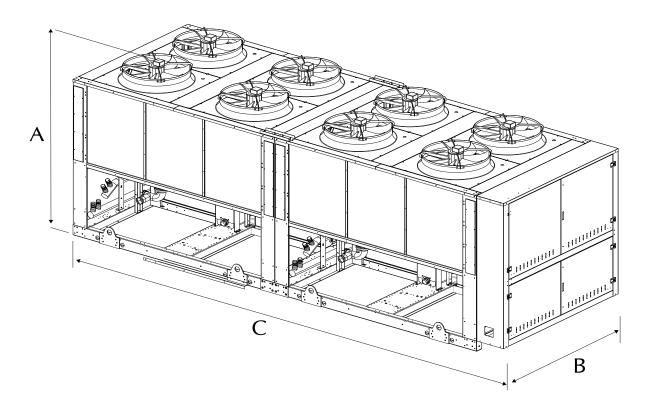
Технические характеристики

Mod. NRL Free Cooling		Vers.	2000	2250	2500	2800	3000	3300	3600
	(1.347)	A	494	557	620	674	728	860	904
Холодопроизводительность	(KW)	E	456	517	578	620	662	800	842
	(1.347)	A	206	217	228	272	314	318	350
Полная потребляемая мощность	(KW)	Е	218	229	240	290	338	338	372
D	(1/1.)	A	84970	95800	106640	115930	125220	147920	155490
Расход воды	(l/h)	Е	78430	88920	99420	106640	113860	137600	144820
П	(kPa)	A	81	92	92	98	83	104	107
Падение давления	(KPa)	E	69	80	80	84	70	90	93
Output and a state of the same and a	(347/347)	A	2.40	2.57	2.72	2.48	2.32	2.70	2.58
Энергетическая эффективность	(VV / VV)	E	2.09	2.26	2.41	2.14	1.96	2.37	2.26
Dakarus =au	(A)	A	389	403	417	504	592	597	634
Рабочий ток	(A)	E	407	421	435	529	624	621	665
V 0.1.0.1.0 EPO 0.1.2 P.O. 1.1.2	(1-147)	A	458	486	514	582	652	798	880
Холодопроизводительность		E	446	486	526	576	627	792	887
Полная потребляемая мощность	(kW)	A/E	15	19	22	22	22	29	29
D	(1/L)	A	85115	95903	106691	115871	125052	147870	155459
Расход воды	(l/h)	E	78413	88871	99330	106518	113706	137540	144658
	(l-D-)	A	110	123	123	131	117	140	145
Падение давления	(kPa)	Е	94	107	107	111	97	122	126
Quantitativa avas adada artical	(347/347)	A	30.53	25.58	23.36	26.45	29.64	27.52	30.34
Энергетическая эффективность	(VV / VV)	Е	29.73	25.58	23.91	26.18	28.50	27.31	30.59
Рабочий ток	(A)	A/E	30	37	44	44	44	59	59
Максимальный ток (FLA)	(A)	A/E	442	495	548	606	664	747	813
Пусковой ток (LRA)	(A)	A/E	651	763	816	815	873	1015	1081
Компрессоров/контуров	(no./no.)	A/E	8/4	8/4	8/4	10/4	12/4	12/4	12/4
2	11 (4)	A	59.5	61.5	62.5	62	61.5	63	65
Звуковое давление	db(A)	Е	53.5	55.3	56.5	56.0	55.5	57.0	59.0
Трубопроводные соединения	Ø	(00)	3"	3"/4"	4"	4"	4"	4"	4"
		A	156000	193200	230400	228000	225600	310400	307200
Расход воздуха	(m^3/h)	E	111600	136400	161200	159600	161400	217200	219600
			_						
Комплект гидравлическо	го оборуд	ования	_						
Емкость бака	(1)	A/E	2x700	2x700	2x700	2x700	2x700	2x700V	2x700
Потр. мощность насоса умеренного давления	(kW)	A/E	13.0	6.5+8.6	17.2	17.2	17.2	24.7	24.7
Потр. ток насоса умеренного давления	(A)	A/E	22.0	11+14.6	29.2	29.2	29.2	42.4	42.4
Статическое давление (в режиме	(kPa)	A	204	242	242	223	224	192	182
охлаждения компрессором)	. ,	E	223	262	262	250	255	214	206
Статическое давление (в режиме	(kPa)	A	177	214	214	195	195	165	155
непосредств. охлаждения)	. ,	E	199	239	239	226	231	191	182

Указанные технические характеристики относятся к следующим условиям:

Охлаждение:

- температура воды на выходе 7 °C;


- температура наружного воздуха 35 °C;

- разность температур t=5 °C.

Звуковое давление измерено в свободном пространстве на расстоянии 10 м при коэффициенте направленности, равном 2 (в соответствии со стандартом ISO 3744).

– электропитание – 400В

Режим непосредственного охлаждения: температура воды на входе 15 °C; температура наружного воздуха 2 °C; номинальный расход воды; компрессоры отключены.

Модель .NRL Free	Cooling		Модиф.	2000	2250	2500	2800	3000	3300	3600	
Высота	(mm)	Α	A/E	2450	2450	2450	2450	2450	2450	2450	
Ширина	(mm)	В	A/E	2200	2200	2200	2200	2200	2200	2200	
Глубина	(mm)	С	A/E	6400	7250	8100	8100	8100	11100	11100	
Масса (сухая)	(Kg)		A/E	5670	6190	6700	7120	7580	9060	9330	

NRC

Холодильные машины с воздушным охлаждением, тепловые насосы и компрессорно-конденсаторные агрегаты с центробежными вентиляторами производительгостью от 46 до 264 кВт

R407C

Aermec adheres to the EUROVENT Certification Programme. The products concerned appear in the EUROVENT Certified Products Guide.

• МОДИФИКАЦИЯ С ВОДЯНЫМ НАСОСОМ И БАКОМАККУМУЛЯТОРОМ

• СТАНДАРТНАЯ МОДИФИКАЦИЯ

• МОДИФИКАЦИЯ С ВОДЯНЫМ НАСОСОМ

Особенности

- Тринадцать типоразмеров.
- Модификации, работающие только на охлаждение, тепловые насосы и компрессорнооконденсаторные агрегаты с воздушным охлаждением.
- Все модификации рассчитаны на работу с хладагентом R407C.
- Модификации, работающие только на охлаждение, могут быть оборудованы системой частичной или полной рекуперацией тепла.
- Четыре модификации:
- стандартная модификация с водяным фильтром и защитой по протоку воды;
- стандартная модификация только с водяным фильтром;
- модификация, оборудованные насосным агрегатом для работы при умеренном напоре, с накопитель ным баком емкостью 500 л (700 л для 800 и 1000), нагревателем защиты от за мерзания воды мощностью 300 Вт (2х300 Вт от 750 до 1000), водяным фильтром, защитой по протоку воды и расширительным баком;
- модификация, оборудованные насосным агрегатом для работы при большом напоре, с

- накопительным баком емкостью $500 \ \Lambda$ ($700 \ \Lambda$ для $800 \ и$ 1000), нагревателем защиты от замерзания воды мощностью $300 \ BT$ ($2x300 \ BT$ от $750 \ до$ 1000), водяным фильтром, защитой по протоку воды и расширительным баком.
- Все модификации, за исключением компрессорно-конденсаторного агрегата, по заказу могут быть дооборудованы для охлаждения воды до температуры от +4 до -6°С. Необходимость такого дооборудова ния должна быть отмечена при заказе на поставку системы.
- Модификации с насосом и/или накопительным баком оборудованы автоматическим воздушным клапаном, системой заполнения водой, расширительным баком и предохранителем клапаном для слива воды в канализационную систему.
- Высокоэффективные компрессоры спирального типа с низким энергопотреблением.
- Модульная система управления на основе микро процессоров.
- Индикация параметров работы на одном из четырех языков.
- Упрощенная панель управления всеми основ-

- ными режимами с аварийной сигнализацией.
- Высокоэффективные теплообменники пластинчатого типа.
- Испаритель, снабженный электронагревательным элементом.
- Электронагреватель картера компрессора.
- Датчик низкого давления (входит в стандартную комплектацию тепловых насосов).
- Датчик высокого давления (входит в стандартную комплектацию тепловых насосов и моделей типоразмеров 500 - 1000, работающих только на охлаждение).
- Выброс воздуха только в вертикальном направлении.
- Радиальные вентиляторы с изменяемой скоростью вращения.
- При необходимости возможно дооборудование холодильных машин для работы при повышенном статическом давлении (подробности можно узнать у представителя компании AERMEC).
- Компактные размеры.
- Металлический корпус с антикоррозионным покрытием из полиэстера.

Дополнительное оборудование

- AER485: Интерфейс RS-485 для обмена данными через сеть телеметрического управления по протоколу MODBUS.
- ÁVX: Пружинные вибропоглощающие опоры корпуса. Выбираются в соответствии с таблицей совместимости дополнительного оборудования.
- DR: Низкотемпературный комплект, включающий шибер, устанавливаемый на выходе вентиляторного агрегата и регулирующий поступление воздуха в конденсатор в соответствии с давлением, регистрируемым датчиком; в комплекты DR 202 402 входят датчики высокого давления TP2.
- DRE: Электронная система снижения пикового тока (устанавливается на заводеизготовителе).
- PGS: Система программирования ежедневного/еженедельного расписания работы с возможностью программирования двух ежедневных циклов включения/ выключения и задания различных пара-

- метров на каждый день недели.
- RIF: Система перефазировки напряжения, подключаемая к электромотору и снижающая пусковой ток. Устанавливается на заводе изготовителе, поэтому необходимость установки такой системы должна быть отражена в заказе на поставку оборудования.
- AERWEB30: Позволяет осуществлять контроль за работой чиллера с персонального компьютера через последовательный интерфейс. Использование дополнительных модулей AERMODEM позволяет осуществлять контроль через телефонную линию, а AERMODEM GSM через сеть GSM. AERWEB может поддерживать до 9 чиллеров, каждый из которых должен быть укомплектован опцией AER485 или AER485P2.
- ТР1: Датчик низкого давления, служащий для индикации рабочего давления на дисплее карты микропроцессора (по одному на каждый контур); входит в стандартную комплектацию тепловых насосов.

- TP2: Датчик высокого давления, служащий для индикации рабочего давления на дисплее карты микропроцессора (по одному на каждый контур); входит в стандартную комплектацию тепловых насосов и холодильных машин типоразмеров 500 -1000, работающих только на охлаждение.
- VT: Вибропоглощающие элементы крепления; четыре элемента монтируются в нижней части несущейрамы.
- DUALCHILLER: Упрощенная система управления, предназначенная для контроля, включения/выключения двух холодильных машин, входящих в единую систему и оборудованных устройствами Aermec GR3. Управление происходит так, как если бы имелась только одна холодильная машина.
- MULTICHILLER: система, служащая для управления работой, включения или отключения отдельных холодильных машин, входящих в единую систему и подключенных параллельно друг другу, при постоянстве расхода в испарителях.

				Сови	естимость	ДОПОЛНИТ	ельного об	орудован	4 9				
Модель	275	300	325	350	500	550	600	650	700	750	800	900	1000
AER485	/	~	~	~	~	~	~	~	~	~	/	V	~
DUALCHILLER	/	~	~	~	~	~	~	~	~	~	/	V	~
MULTICHILLER	~	~	~	~	~	~	~	~	~	~	/	V	~
AVX							401/402*	401/402*	402/403*	402/403*	404/406*	404/406*	405/407*
DR 200	✓ **	✓ **	✓ **										
DR 400				✓ **	✓ **	✓ **							
DR 202	/	~	V										
DR 402				~	~	~							
DR 600							~	~	~	~			
DR 800											/	~	~
DRE 275	V		-							-			
DRE 300		~	-		-								
DRE 325			~	~									
DRE 10					✓ (x2)	~	✓ (x2)						
DRE 15					~	✓ (x2)	✓ (x2)	✓ (x4)	✓ (x4)	✓ (x2)			
DRE 25										✓ (x2)	✓ (x4)	✓ (x2)	
DRE 30												✓ (x2)	✓ (x4)
PGS	~	~	~	~	~	~	~	~	~	~	~	~	~
RIF	62	62	62	82	63	63	64	64	64	64	64	74	84
AERWEB30	/	/	~	✓	/	/	/	/	~	✓	✓	/	~
TP 1	✓ (x2)***	✓ (x2)***	✓ (x2)***	✓ (x2)***	✓ (x2)***	✓ (x2)***	✓ (x2)***	✓ (x2)***	✓ (x2)***				
TP 2	✓ (x2)***	✓ (x2)***	✓ (x2)***	✓ (x2)***									
VT 14*				~	~	~							
VT 16*	/	~	~										
VT 17					~	~							
VT 2	V	~	~	~									

DR = опция обязательна для модификации D

* = для модификаций с бакомаккумулятором ** = для модификаций с тепловым насосомs.

*** = стандарт для моделей с тепловым насосом. Прим. в скобках указано необходимое количество

Выбор модификации

Комбинируя различные опции, можно подобрать такую модель серии NRC, которая в точности соответствует конкретным требованиям потребителя.

Кодовые обозначения опций:

Код: NRC

Типоразмер:

0275, 0300, 0325, 0350, 0500, 0550 0600, 0650, 0700, 0750, 0800, 0900, 1000

Условия эксплуатации:

° – стандартные, для температуры воды выше + 4°C Y – для температуры воды на выходе системы до –6°C

Модель:

- только охлаждение

Н тепловой насос

Система рекуперации тепла:

– без рекуперации

D с частичной рекуперацией

Т с полной рекуперацией

Модификация:

стандартная

L – низкошумная

Теплообменник:

из алюминия

R – из меди

S – из меди с оловянным покрытием V крашеная медь / алюминий

Испаритель:

по стандарту PED

С – без испарителя

G – по стандарту TUVD°

Электропитание:

400 В, трехфазное, 50 Гц, с термомагнитными

размыкателями 230 В, трехфазное, 50 Гц, с термомагнитными размыкателями

500 В, трехфазное, 50 Гц, с термомагнитными размыкателями

Бакаккумулятор:

00 без бака

01 бак для умеренного напора с одним насосом

бак для умеренного напора с резервным насосом бак для высокого напора с одним насосом

бак для высокого напора с резервным насосом

05 бак с отверстиями для крепления вспомогательного нагревателя, умеренного напора, с одним насосом 06 бак с отверстиями для крепления вспомогательного

нагревателя, умеренного напора, с резервным насосом 07 бак с отверстиями для крепления вспомогательного нагревателя, высокого напора, с одним насосом 08 бак с отверстиями для крепления вспомогательного нагревателя, высокого напора, с резервным насосом

Р1 без бака, для умеренного напора, с одним насосом Р2 без бака, для умеренного напора, с резервным насосом Р3 без бака, для высокого напора, с одним насосом Р4 без бака, для высокого напора, с резервным насосом

Внимание:

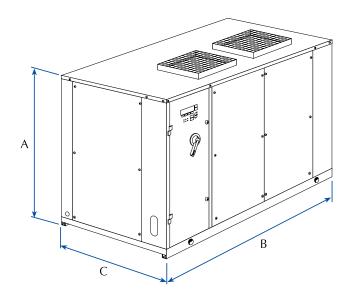
— Стандартные модификации обозначаются символом «°».
— Тепловым насосом не могут быть оборудованы модификации, имеющие обозначения Y, T, L, и С

Пример расшифровки кодового обозначения: NRC0500R402 это агрегат серии NRC, типоразмер 500, с оребрением конденсатора из меди, с испарителем стандарта PED, с распределительным шитом для питания моторов компрессоров от напряжения 230 В (трехфазного), 50 Гц, с накопителем для умеренного напора и резервным насосом.

Технические характеристики

Холодильные машины	Мод.	275	300	325	350	500	550	600	650	700	750	800	900	1000
	0	51	59	67	76	89	97	120	136	156	184	214	238	264
Холодопроизводительность (кВт)	L	46	54	62	70	81	89	110	126	142	168	194	216	238
- (D)	0	22.0	26.1	29.4	32.3	37.6	40.4	52.0	58.0	65.5	77.0	90.0	100.0	112.5
Полная потр. мощность (кВт)	L	22.7	26.3	29.7	33.1	40.0	43.0	47.5	54.0	62.0	72.5	83.0	94.0	104.5
	0	40.3	46.5	51.3	57.5	68.1	72.1	93.4	101.5	117.0	134.5	153.7	171.7	193.2
Потребляемый ток (А)	L	40.5	45.8	50.7	57.7	68.7	73.3	82.8	91.9	107.4	122.8	138.1	155.8	173.4
D (/)	0	8770	10150	11520	13070	15310	16680	20640	23390	26830	31650	36810	40940	45410
Расход воды (л/ч)	L	7910	9290	10660	12040	13930	15310	18920	21670	24420	28900	33370	37150	40940
П(П-)	0	37.0	32.2	31.6	43.0	27.6	22.4	32.0	28.3	36.5	27.8	35.6	30.3	30.6
Падение давления (кПа)	L	30.3	27.0	27.1	36.5	22.6	19.0	27.2	24.2	30.5	23.2	29.6	25.0	25.0
Da	0	16000	22000	22000	26000	27000	27000	45000	45000	50000	50000	60000	68000	68000
Полный расход воздуха (м3/ч)	L	11000	15500	15500	18000	19000	19000	31500	31500	35000	35000	42000	47600	47600
2	0	53.0	53.0	54.0	56.0	56.0	56.0	58.0	58.0	59.0	59.0	60.0	60.0	60.0
Звуковое давление dB (A)	L	49.0	49.0	50.0	52.0	52.0	52.0	54.0	54.0	55.0	55.0	56.0	56.5	56.5
Компрессоры/контуры (число)	Bce	2/2	2/2	2/2	2/2	3 / 2	3 / 2	4/2	4/2	4/2	4/2	4/2	4/2	4/2
Ступени регулировки (число)	Bce	2	2	2	2	3	3	4	4	4	4	4	4	4
Вентиляторы (число)	Bce	2	2	2	2	2	2	3	3	3	3	4	4	4
	0	630	570	570	590	600	600	600	600	580	580	650	600	700
Скорость вентиляторов(об/мин)	L	540	500	520	500	510	510	520	520	500	500	580	530	600
Максимальный ток (А)	Bce	54	63	71	80	93	99	131	143	164	190	225	245	277
	0	153	161	165	208	219	223	207	215	267	318	337	404	424
Пиковой ток (А)	L	152	158	163	206	217	221	205	212	266	315	334	401	419
Нагреватель картера (Вт)	Все	2x75	2x75	2x75	2x75	3x75	3x75	4x75	4x75	4x75	2x75 2x130	-4x130	4x130	4x130
Нагреватель антифриза (Вт)	Bce	300	300	300	300	300	300	300	300	300	2x300	2x300	3x300	2x300
T (00-P1/P4	M/2"	V3"	V3"	V3"									
Трубопр. соедиенения *	01/08	F/2"½	V3"	V3"	V3"									
Емкость накопителя (л)	Bce	500	500	500	500	500	500	500	500	500	500	700	700	700
211 / 17) 4 **	0	127	127	122	104	131	126	75	90	103	37	97	95	82
Эффективное давл.(кПа) gr1 **	L	142	138	131	119	149	143	95	110	132	75	113	116	102
211 / 11 2**	0	178	173	168	154	195	193	177	163	146	105	215	212	195
Эффективное давл.(кПа) gr2**	L	186	180	176	164	203	203	183	168	154	130	235	232	215

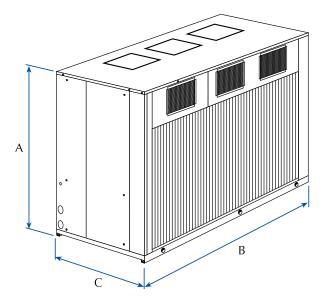
Тепловые насосы		275 H	300 H	325 H	350 H	500 H	550 H	600 H	650 H	700 H	750 H	800 H	900 H	1000 H
Холодопроизводительность	kW	49	57	65	74	86	94	118	134	152	178	204	230	254
Полная потр. мощность	kW	21.6	25.6	28.8	31.7	36.9	39.6	51.0	56.5	64.0	76.0	89.5	100.0	112.0
Потребляемый ток	A	39.7	45.8	50.5	56.7	67.1	71.0	92.0	99.8	115.3	133.5	153.7	172.7	192.9
Расход воды	l/h	8430	9800	11180	12730	14790	16170	20300	23050	26140	30620	35090	39560	43690
Pressure drop	kPa	34.2	30.3	32.5	42.2	25.4	20.7	30.5	27.0	34.8	26.0	32.8	28.0	28.3
Падение давления	kW	58	67	77	87	101	111	136	155	175	207	239	267	295
Полная потр. мощность	kW	25.0	29.5	33.0	36.2	42.5	45.7	57.5	63.5	71.5	83.5	96.5	108.0	119.5
Потребляемый ток	A	44.0	50.7	56.1	62.7	74.4	78.9	101.9	110.9	127.4	145.8	166.2	186.5	206.9
Расход воды	l/h	9980	11520	13248	14960	17370	19090	23390	26660	30100	35600	41110	45920	50740
Падение давления	kPa	42.0	36.8	40.9	51.7	32.2	26.5	39.9	40.0	41.0	31.0	45.2	42.2	44.9
Полный расход воздуха	m³/h	16000	22000	22000	26000	27000	27000	45000	45000	50000	50000	60000	68000	68000
Звуковое давление	dB (A)	53.0	53.0	54.0	56.0	56.0	56.0	58.0	58.0	59.0	59.0	60.0	60.0	60.0
Компрессоры/контуры	n.	2/2	2/2	2/2	2/2	3 / 2	3 / 2	4/2	4/2	4/2	4/2	4/2	4/2	4/2
Ступени регулировки	n.	2	2	2	2	3	3	4	4	4	4	4	4	4
Вентиляторы	n.	2	2	2	2	2	2	3	3	3	3	4	4	4
Скорость вентиляторов	об/мин	630	570	570	590	600	600	600	600	580	580	650	600	700
Максимальный ток	A	54	63	71	80	93	99	131	143	164	190	225	245	277
Пиковый ток	A	155	162	168	210	222	227	213	223	275	326	346	414	435
Нагреватель картера	W	2x75	2x75	2x75	2x75	3x75	3x75	4x75	4x75	4x75	2x75 2x130	-4x130	4x130	4x130
Нагреватель антифриза	W	300	300	300	300	300	300	300	300	300	2x300	2x300	2x300	2x300
Touris and Augustus * CA	00-P1/P4	M/2"	V3"	V3"	V3"									
Трубопр. соедиенения*∅	01/08	F/2"½	V3"	V3"	V3"									
Емкость накопителя	1	500	500	500	500	500	500	500	500	500	500	700	700	700
Эффективное давл. gr1**	kPa	137	134	126	108	146	132	80	95	115	55	105	102	88
Эффективное давл. gr2**	kPa	180	176	170	157	196	196	180	168	152	115	225	222	204

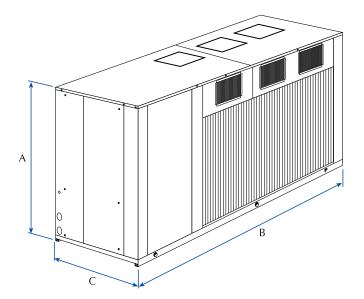

^{*} = подключение трубопроводов: М патрубок, F отверстие, V соединение с хомутом ** = gr1 для умеренного напора; gr2 для большого напора

Указанные технические характеристики относятся к следующим условиям: Звуковое давление измерено в свободном пространстве, на расстоянии 10 м, при коэффициенте направленности = 2. Электропитание: 400 В

Охлаждение:

температура воды на выходе 7°C;
температура окружающей среды 35°C;
перепад температур t = 5°C.


Нагрев:
- температура воды на выходе 50°С;
- температура окружающей среды 7°С (по сухому
- термометру), 6°С (по мокрому термометру);
- перепад температур t = 5°С.


A B

NRC 275 - 550 без бака-аккумулятора

NRC 275 - 550 с баком-аккумулятором

NRC 600 - 1000 без бака-аккумулятора

NRC 600 - 1000 с баком-аккумулятором

Mod. NRC 00) (без бакаакку	мулятора)												
		275	300	325	350	500	550	600	650	700	750	800	900	1000
A	mm	1763	1793	1793	1763	1963	1963	2288	2288	2288	2288	2295	2295	2295
В	mm	2100	2100	2100	2450	2450	2450	3750	3750	4550	4550	4950	4950	4950
С	mm	950	950	950	950	950	950	1100	1100	1100	1100	1300	1300	1300
	NRC	629	665	699	777	904	919	1481	1498	1737	1918	2670	2700	2960
Масса (кг)	NRC H	689	737	748	841	983	999	1593	1610	1831	2001	2797	2827	3095
Mod. NRC P	1/Р4 (с насосол	м)												
		275	300	325	350	500	550	600	650	700	750	800	900	1000
A	mm	1763	1793	1793	1763	1963	1963	2288	2288	2288	2288	2295	2295	2295
В	mm	2100	2100	2100	2450	2450	2450	3750	3750	4550	4550	4950	4950	4950
С	mm	950	950	950	950	950	950	1100	1100	1100	1100	1300	1300	1300
14 ()	NRC	663	699	733	811	938	953	1659	1676	1914	2096	2870	2900	3160
Масса (кг)	NRC H	723	771	782	875	1017	1033	1771	1788	2009	2179	2997	3027	3295
Модель NRC	01/08 (с бакол	маккумулято	ром и н	асосом)										
		275	300	325	350	500	550	600	650	700	750	800	900	1000
A	mm	1763	1793	1793	1763	1963	1963	2288	2288	2288	2288	2295	2295	2295
В	mm	2950	2950	2950	3300	3300	3300	4550	4550	5350	5350	5750	5750	5750
C	mm	950	950	950	950	950	950	1100	1100	1100	1100	1300	1300	1300
NA ()	NRC	827	891	901	996	1121	1138	1743	1760	1998	2180	3070	3100	3350
Масса (кг)	NRC H	865	920	930	1030	1194	1210	1855	1872	2093	2263	3190	3220	3482

Примечание. Для моделей с накопителем указана масса для случая пустого бака

R134a

Холодильные машины с воздушным охлаждением, осевыми вентиляторами и двухвинтовыми компрессорами холодопроизводительностью от 238 до 1600 кВт

Особенности

- Тридцать два типоразмера.
- Модификации, работающие только на охлаждение.
- Модификации, рассчитанные на работу с хладагентом R134a.
- Молификации с частичной или полной рекуперацией тепла.
- Высокоэффективные винтовые компрессоры малой шумности с плавной регулировкой холодопроизводительности от 40 до 100% (при использовании электронного вентиля, поставляемого по дополнительному заказу, от 25 до 100%).
- Возможность оборудования насосным агрегатом, включающим: один насос или один основной и один резервный насосы; два расширительных бака емкостью 25 л; заправочное устройство.

- Стандартная модификация (о):
- допустимая температура воздуха до 42°C; звукопоглощающее покрытие компрессорного агрегата.
- Модификация L: звукопоглощающее покрытие компрессорного агрегата;
 - система регулировки скорости вращения вентилятора; устройство глушения звука в контуре •
- нагнетания. Высокоэффективная модификация А: допустимая температура воздуха до 48°C; звукопоглощающее покрытие компрес-
- сорного агрегата. • Модификация Е:
- допустимая температура воздуха до 48°C звукопоглощающий кожух для дополнительного уменьшения шума компрессор-

- ного агрегата;
- система регулировки скорости вращения вентилятора;
- устройство глушения звука в контуре нагнетания.
- Модульная система управления на основе микропроцессора.
- Индикация рабочих параметров на нескольких языках.
- Трубчатый теплообменник с характеристиками, оптимизированными для применения хладагента R134a.
- Осевые вентиляторы, обладающие предельно низким уровнем шума.
- Компактные размеры.
- Металлический корпус с антикоррозионным покрытием из полиэстера.

Дополнительное оборудование

AER485P1: Интерфейс (стандарта RS485) для обмена данными через сеть телеметрического управления системами здания по протоколу MODBUS.

AVX: Пружинные вибропоглощающие опоры корпуса; выбираются в соответствии с таблицей совместимости дополнительного оборудования.

DCPX: Система, обеспечивающая работу холодильной машины при температуре ниже 19°C (до -10°C). Входит в стандартную комплектацию для модификаций D и L

KRS: Электронагревательный элемент для теплообменника; устанавливается на заводе изготовителе.

GP: Решетка, защищающая внешний теплообменник от повреждений.

PRV: Панель дистанционного управления;

обеспечивает управление всеми функциями холодильной машины.

RIFNS: Система перефазировки напряжения, подключаемая к электромотору и снижающая пусковой ток. Устанавливается на заводе изготовителе, поэтому необходимость установки такой системы должна быть отражена в заказе на поставку оборудования.

AERWEB30: Система, обеспечивающая дистанционное управление работой холодильных машин с персонального компьютера с последовательным подключением. При использовании дополнительного модуля AERMODEM управление может осуществляться по телефонной сети, а при использовании модуля AERMODEM GSM с мобильного телефона стандарта GSM. Система AERWEB позволяетуправ-

лять работой до 9 холодильных машин, каждая из которых должна быть оборудована дополнительными устройствами AER485 или AER485P2.

К: акустический комплект. Позволяет дополнительно снизить шум холодильной машины. Устанавливается на заводе изготовителе, поэтому необходимость установки такой системы должна быть отражена в заказе на поставку оборудования

IULTICHILLER: Система управления, предназначенная для включения/выключения отдельных холодильных машин, входящих в единую систему и подключенных параллельно. При этом поддерживается постоянный расход воды во всех испарителях.

				Can	MOCTIM	OCT!	DO411147	ALUGEO	оборудо	Dalina						
Модель NS	1251	1401	1601	1801	<u>местим</u> 2101	<u>ость до</u> 2401	1402	льного 1602	000рудо 1802	2002	2202	2352	2502	2652	2802	3002
AER485P1	√ (x1)	✓ (x1)	✓ (x1)	✓ (x1)	✓ (x1)	∠ (x1)	√ (x2)	√ (x2)	√ (x2)	∠ (x2)	∠ (x2)	∠ (x2)	√ (x2)	√ (x2)	✓ (x2)	√ (x2)
MULTICHILLER	V (X1)	✓ (X1)	✓ (X1)	V (X1)	V (XI)	V (A1)	V (A2)	V (XZ)	V (X2)	V (XZ)	V (A2)	V (X2)	V (A2)	V (A2)	V (A2)	V (A2)
AK-ACUSTIC KIT (*)	<u> </u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>
PRV3	<i>V</i>	<u></u>	<u></u>	<u></u>	<u></u>	V	V	V	<u></u>	v	V	v	V	V	<u></u>	V
AERWEB30	V	~	~	~	~	~	~	~	~	~	~	~	V	~	~	~
Модель NS	3202	3402	3602	3902	4202	4502	4802	5002	5202	5402	5702	6003	6303	6603	6903	7203
AER485P1	✓ (x2)	✓ (x2)	✓ (x2)	✓ (x2)	✓ (x2)	✓ (x2)	✓ (x2)	√ (x2)	✓ (x2)	✓ (x2)	✓ (x2)	✓ (x3)	✓ (x3)	✓ (x3)	✓ (x3)	✓ (x3)
MULTICHILLER	<u> </u>	V	V	V	V	<u> </u>	<u> </u>	V	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	V	<u> </u>
AK-ACUSTIC KIT (*)	<u> </u>	<u> </u>	<u>/</u>	<u> </u>	<u>/</u>	<u> </u>	<u> </u>	<u>/</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>/</u>	<u> </u>
PRV3	<u> </u>	<u>/</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>/</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
AERWEB30	<i>\</i>	<u> </u>	<u> </u>	<u> </u>	<i>'</i>	<i>'</i>	<u> </u>	<u> </u>	<i>'</i>	<u> </u>	<u> </u>	<u> </u>	<i>'</i>	<i>'</i>	<u> </u>	<i>'</i>
Модель NS °/L (*)	1251	1401	1601	1801	2101	2401	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002
GP 300M (2)	V	V	V	V												
GP 400M (2)				•	~	V										
GP 300B (2)							~	<u></u>	<u> </u>							
GP 400B (2)										V	V	V	V			
GP 500B (2)														~	~	
GP 300M+300M (2)																V
KRS	KRS10	KRS10	KRS10	KRS10	KRS11	KRS11	KRS10	KRS10	KRS10	KRS10	KRS10	KRS10	KRS10	KRS11	KRS11	KRS12
KRSDES (***)	KRS10DES		KRS10DES					KRS18DES		KRS18DES		KRS18DES		KRS19DES	KRS19DES	
KRSREC (***)	KKS10REC	KRS10REC	KRS10REC	KRS10REC	KRS11REC	KRS11REC	KKS10REC	KRS10REC	KRS10REC	KKS10REC	KKS10REC	KRS10REC	KRS10REC	KRS11REC	KRS11REC	KKS12REC
Модель NS °/L (*)	3202	3402	3602	3902	4202	4502	4802	5002	5202	5402	5702	6003	6303	6603	6903	7203
GP 300M+300M	- J202 - V	V	3002	3702	1202	1302	1002	3002	3202	3402	3702	0003	0303	0003	0703	7203
GP 300M+400M			_	_	_											
GP 400M+400M			•	•	•	~										
GP 400M+500M							•	~								
GP 500M+500M									<u> </u>	~	<u> </u>					
GP 300M+300M+400M						,					<u></u>					
GP 300M+400M+400M												~	~			
GP 400M+400M+400M														<u> </u>	<u> </u>	
KRS	KRS12	KRS12	KRS12	KRS13	KRS13	KRS14	KRS14	KRS14	KRS14	KRS14	KRS14	KRS15	KRS16	KRS16	KRS17	KRS17
KRSDES (***)	KRS12DES			KRS13DES					KRS14DES	KRS14DES		KRS15DES		KRS16DES	KRS17DES	
KRSREC (***)	KRS12REC	KRS12REC	KRS12REC	KRS13REC	KRS13REC	KRS14REC	KRS14REC	KRS14REC	KRS14REC	KRS14REC	KRS14REC	KRS15REC	KRS16REC	KRS16REC	KRS17REC	KRS17REC
Модель NS A/E (*)	1251	1401	1601	1801	2101	2401	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002
GP 300M	<u></u>	<u>v</u>	<u>v</u>				1102	1002	1002							
GP 400M		•														
				_												
	,			V	<i>-</i>	~										
GP 500M GP 300B				V	~	V	<i>V</i>	<i>V</i>								
GP 500M				V	V	V	V	v	<i>V</i>							
GP 500M GP 300B GP 400B				<i>V</i>	V	<i>V</i>	<i>V</i>	V	<i>V</i>	V	V	<i>V</i>	<i>V</i>	<i>V</i>	<i>V</i>	
GP 500M GP 300B GP 400B GP 500B				V	V	<i>V</i>	<i>V</i>	V	<i>V</i>	V	V	<i>V</i>	<i>V</i>	<i>V</i>	<i>V</i>	<i>V</i>
GP 500M GP 300B GP 400B GP 500B GP 300M+300M KRS	KRS10	KRS10	KRS11	KRS10	KRS11	KRS11	KRS11	KRS11	KRS10	KRS10	KRS11	KRS11	KRS11	KRS11	KRS11	KRS13
GP 500M GP 300B GP 400B GP 500B GP 500M KRS KRSDES (***)	KRS10DES	KRS10DES	KRS11DES	KRS10 KRS10DES	KRS11 KRS11DES	KRS11 KRS11DES	KRS11 KRS19DES	KRS11 KRS19DES	KRS10 KRS18DES	KRS10 KRS18DES	KRS11 KRS19DES	KRS11 KRS19DES	KRS11 KRS19DES	KRS11 KRS19DES	KRS11 KRS19DES	KRS13 KRS13DES
GP 500M GP 300B GP 400B GP 500B GP 500M GP 300M+300M KRS KRSDES (***)	KRS10DES		KRS11DES	KRS10 KRS10DES	KRS11 KRS11DES	KRS11 KRS11DES	KRS11 KRS19DES	KRS11 KRS19DES	KRS10	KRS10 KRS18DES	KRS11 KRS19DES	KRS11 KRS19DES	KRS11 KRS19DES	KRS11 KRS19DES	KRS11 KRS19DES	KRS13 KRS13DES
GP 500M GP 300B GP 400B GP 500B GP 300M+300M KRS KRSDES (***) KRSREC (***)	KRS10DES KRS10REC	KRS10DES KRS10REC	KRS11DES KRS11REC	KRS10 KRS10DES KRS10REC	KRS11 KRS11DES KRS11REC	KRS11 KRS11DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS10 KRS18DES KRS10REC	KRS10 KRS18DES KRS10REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS13 KRS13DES KRS13REC
GP 500M GP 300B GP 400B GP 500B GP 300M+300M KRS KRSDES (***) KRSREC (***)	KRS10DES KRS10REC	KRS10DES	KRS11DES	KRS10 KRS10DES	KRS11 KRS11DES	KRS11 KRS11DES	KRS11 KRS19DES	KRS11 KRS19DES	KRS10 KRS18DES	KRS10 KRS18DES	KRS11 KRS19DES	KRS11 KRS19DES	KRS11 KRS19DES	KRS11 KRS19DES	KRS11 KRS19DES	KRS13 KRS13DES
GP 500M GP 300B GP 400B GP 500B GP 300M+300M KRS KRSDES (***) KRSREC (***)	KRS10DES KRS10REC	KRS10DES KRS10REC 3402	KRS11DES KRS11REC	KRS10 KRS10DES KRS10REC	KRS11 KRS11DES KRS11REC	KRS11 KRS11DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS10 KRS18DES KRS10REC	KRS10 KRS18DES KRS10REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS13 KRS13DES KRS13REC
GP 500M GP 300B GP 400B GP 500B GP 300M+300M KRS KRSDES (***) KRSREC (***) MOACAD NS A/E (*) GP 300M+300M GP 300M+400M	KRS10DES KRS10REC	KRS10DES KRS10REC	KRS11DES KRS11REC	KRS10 KRS10DES KRS10REC	KRS11 KRS11DES KRS11REC	KRS11 KRS11DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS10 KRS18DES KRS10REC	KRS10 KRS18DES KRS10REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS13 KRS13DES KRS13REC
GP 500M GP 300B GP 400B GP 500B GP 500B GP 300M+300M KRS KRSDES (***) KRSREC (***) MOACAL NS A/E (*) GP 300M+300M GP 300M+400M GP 400M+400M	KRS10DES KRS10REC	KRS10DES KRS10REC 3402	KRS11DES KRS11REC	KRS10 KRS10DES KRS10REC	KRS11 KRS11DES KRS11REC	KRS11 KRS11DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS10 KRS18DES KRS10REC	KRS10 KRS18DES KRS10REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS13 KRS13DES KRS13REC
GP 500M GP 300B GP 400B GP 500B GP 300M+300M KRS KRSDES (***) KRSREC (***) MOACAL NS A/E (*) GP 300M+400M GP 400M+400M GP 400M+500M	KRS10DES KRS10REC	KRS10DES KRS10REC 3402	KRS11DES KRS11REC	KRS10 KRS10DES KRS10REC	KRS11 KRS11DES KRS11REC	KRS11 KRS11DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS10 KRS18DES KRS10REC	KRS10 KRS18DES KRS10REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS13 KRS13DES KRS13REC
GP 500M GP 300B GP 400B GP 500B GP 300M+300M KRS KRSDES (***) KRSREC (***) MOACH NS A/E (*) GP 300M+300M GP 300M+400M GP 400M+400M GP 400M+500M GP 500M+500M	KRS10DES KRS10REC	KRS10DES KRS10REC 3402	KRS11DES KRS11REC	KRS10 KRS10DES KRS10REC	KRS11 KRS11DES KRS11REC	KRS11 KRS11DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC 5002	KRS10 KRS18DES KRS10REC	KRS10 KRS18DES KRS10REC	KRS11 KRS19DES KRS11REC 5702	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS13 KRS13DES KRS13REC
GP 500M GP 300B GP 400B GP 500B GP 300M+300M KRS KRSDES (***) KRSREC (***) MOA@Ab NS A/E (*) GP 300M+300M GP 300M+400M GP 400M+400M GP 400M+500M GP 500M+500M GP 500M+500M GP 400M+400M GP 400M+500M	KRS10DES KRS10REC	KRS10DES KRS10REC 3402	KRS11DES KRS11REC	KRS10 KRS10DES KRS10REC	KRS11 KRS11DES KRS11REC	KRS11 KRS11DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC 5002	KRS10 KRS18DES KRS10REC	KRS10 KRS18DES KRS10REC	KRS11 KRS19DES KRS11REC 5702	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS13 KRS13DES KRS13REC
GP 500M GP 300B GP 400B GP 400B GP 500B GP 500B GP 300M+300M KRS KRSDES (***) MOARAD NS A/E (*) GP 300M+300M GP 300M+400M GP 400M+400M GP 400M+500M GP 500M+500M GP 400M+500M GP 400M+500M GP 400M+500M GP 400M+500M	KRS10DES KRS10REC	KRS10DES KRS10REC 3402	KRS11DES KRS11REC	KRS10 KRS10DES KRS10REC	KRS11 KRS11DES KRS11REC	KRS11 KRS11DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC 5002	KRS10 KRS18DES KRS10REC	KRS10 KRS18DES KRS10REC	KRS11 KRS19DES KRS11REC 5702	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC	KRS13 KRS13DES KRS13REC
GP 500M GP 300B GP 300B GP 400B GP 500B GP 300M+300M KRS KRSDES (***) KRSREC (***) MOACAL NS A/E (*) GP 300M+300M GP 300M+400M GP 400M+400M GP 400M+500M GP 500M+500M GP 400M+500M GP 400M+500M GP 400M+500M GP 400M+500M GP 500M+500M GP 500M+500M KRS	KRS10DES KRS10REC 3202	KRS10DES KRS10REC 3402	KRS11DES KRS11REC 3602	KRS10 KRS10DES KRS10REC 3902	KRS11 KRS11DES KRS11REC	KRS11 KRS11DES KRS11REC 4502	KRS11 KRS19DES KRS11REC 4802	KRS11 KRS19DES KRS11REC	KRS10 KRS18DES KRS10REC 5202	KRS10 KRS18DES KRS10REC 5402 KRS14	KRS11 KRS19DES KRS11REC 5702	KRS11 KRS19DES KRS11REC 6003	KRS11 KRS19DES KRS11REC	KRS11 KRS19DES KRS11REC 6603	KRS11 KRS19DES KRS11REC 6903	KRS13 KRS13DES KRS13REC 7203
GP 500M GP 300B GP 300B GP 400B GP 500B GP 300M+300M KRS KRSDES (***) KRSREC (***) MOACAD NS A/E (*) GP 300M+300M GP 300M+400M GP 400M+400M GP 400M+500M GP 500M+500M GP 400M+500M GP 400M+500M GP 400M+500M GP 400M+500M GP 500M+500M KPS KRSDES (***)	KRS10DES KRS10REC 3202 KRS14 KRS14 KRS14DES	KRS10DES KRS10REC 3402 KRS13 KRS13 KRS13DES	KRS11DES KRS11REC 3602 KRS12 KRS12 KRS12DES	KRS10 KRS10DES KRS10REC 3902 KRS13 KRS13	KRS11 KRS11DES KRS11REC 4202	KRS11 KRS11DES KRS11REC 4502	KRS11 KRS19DES KRS11REC 4802	KRS11 KRS19DES KRS11REC 5002	KRS10 KRS18DES KRS10REC 5202 KRS14 KRS14 KRS14DES	KRS10 KRS18DES KRS10REC 5402 KRS14 KRS14 KRS14DES	KRS11 KRS19DES KRS11REC 5702 KRS14 KRS14 KRS14DES	KRS11 KRS19DES KRS11REC 6003 KRS15 KRS15	KRS11 KRS19DES KRS11REC 6303	KRS11 KRS19DES KRS11REC 6603 KRS16 KRS16 KRS16	KRS11 KRS19DES KRS11REC 6903	KRS13 KRS13DES KRS13REC 7203 KRS17 KRS17DES
GP 500M GP 300B GP 300B GP 400B GP 500B GP 300M+300M KRS KRSDES (***) KRSREC (***) MOACAD NS A/E (*) GP 300M+300M GP 300M+400M GP 400M+400M GP 400M+500M GP 500M+500M GP 400M+500M GP 400M+500M GP 400M+500M GP 400M+500M GP 500M+500M KPS KRSDES (***)	KRS10DES KRS10REC 3202 KRS14 KRS14 KRS14DES	KRS10DES KRS10REC 3402 KRS13 KRS13 KRS13DES	KRS11DES KRS11REC 3602 KRS12 KRS12 KRS12DES	KRS10 KRS10DES KRS10REC 3902 KRS13 KRS13	KRS11 KRS11DES KRS11REC 4202	KRS11 KRS11DES KRS11REC 4502	KRS11 KRS19DES KRS11REC 4802	KRS11 KRS19DES KRS11REC 5002	KRS10 KRS18DES KRS10REC 5202	KRS10 KRS18DES KRS10REC 5402 KRS14 KRS14 KRS14DES	KRS11 KRS19DES KRS11REC 5702 KRS14 KRS14 KRS14DES	KRS11 KRS19DES KRS11REC 6003 KRS15 KRS15	KRS11 KRS19DES KRS11REC 6303	KRS11 KRS19DES KRS11REC 6603 KRS16 KRS16 KRS16	KRS11 KRS19DES KRS11REC 6903	KRS13 KRS13DES KRS13REC 7203 KRS17 KRS17DES
GP 500M GP 300B GP 400B GP 400B GP 500B GP 500B GP 300M+300M KRS KRSDES (***) KRSREC (***) MOACAD NS A/E (*) GP 300M+300M GP 300M+400M GP 400M+400M GP 400M+500M GP 400M+500M GP 400M+500M GP 500M+500M GP 400M+500M GP 400M+500M KRS KRSDES (***) KRSREC (***)	KRS10DES KRS10REC 3202 KRS14 KRS14 KRS14DES KRS14DES KRS14REC	KRS10DES KRS10REC 3402 KRS13 KRS13DES KRS13DES KRS13REC	KRS11DES KRS11REC 3602 KRS12 KRS12DES KRS12DES KRS12DES	KRS10 KRS10DES KRS10REC 3902 KRS13 KRS13DES KRS13DES KRS13REC	KRS11 KRS11DES KRS11REC 4202 KRS13 KRS13DES KRS13DES KRS13DES	KRS11 KRS11DES KRS11REC 4502 KRS14 KRS14DES KRS14DES KRS14DES	KRS11 KRS19DES KRS11REC 4802 KRS14 KRS14DES KRS14DES KRS14EC	KRS11 KRS19DES KRS11REC 5002 KRS14 KRS14DES KRS14DES KRS14REC	KRS10 KRS18DES KRS10REC 5202 KRS14 KRS14DES KRS14DES KRS14REC	KRS10 KRS18DES KRS10REC 5402 KRS14 KRS14DES KRS14DES KRS14REC	KRS11 KRS19DES KRS11REC 5702 KRS14 KRS14DES KRS14REC	KRS11 KRS19DES KRS11REC 6003 KRS15 KRS15 KRS15DES KRS15DES KRS15REC	KRS11 KRS19DES KRS11REC 6303 KRS16 KRS16DES KRS16DES KRS16REC	KRS11 KRS19DES KRS11REC 6603 KRS160ES KRS16DES KRS16REC	KRS11 KRS19DES KRS11REC 6903 KRS17DES KRS17DES KRS17DES	KRS13 KRS13DES KRS13REC 7203 KRS17DES KRS17DES KRS17DES
GP 500M GP 300B GP 400B GP 400B GP 500B GP 500B GP 300M+300M KRS KRSDES (***) KRSREC (***) MOACAD NS A/E (*) GP 300M+300M GP 300M+400M GP 400M+500M GP 500M+500M GP 500M+500M KRS KRSDES (***) KRSREC (***)	KRS10DES KRS10REC 3202 V KRS14 KRS14DES KRS14PEC 1251	KRS10DES KRS10REC 3402 KRS13 KRS13DES KRS13DES KRS13REC	KRS11DES KRS11REC 3602 KRS12 KRS12DES KRS12DES KRS12EC	KRS10 KRS10DES KRS10REC 3902 KRS130ES KRS13DES KRS13DES KRS13REC	KRS11 KRS11DES KRS11REC 4202 KRS13 KRS13 KRS13DES KRS13REC 2101	KRS11 KRS11DES KRS11REC 4502 KRS14 KRS14DES KRS14DES KRS14PEC	KRS11 KRS19DES KRS11REC 4802 KRS14 KRS14DES KRS14DES KRS14PEC	KRS11 KRS19DES KRS11REC 5002 KRS14 KRS14DES KRS14PES KRS14PES	KRS10 KRS18DES KRS10REC 5202 KRS14 KRS14 KRS14DES KRS14PEC	KRS10 KRS18DES KRS10REC 5402 KRS14 KRS14 KRS14DES KRS14REC 2002	KRS11 KRS19DES KRS11REC 5702 KRS14 KRS14 KRS14DES KRS14REC	KRS11 KRS19DES KRS11REC 6003 KRS15 KRS15 KRS15 KRS15DES KRS15DES KRS15REC	KRS11 KRS19DES KRS11REC 6303 KRS166ES KRS16DES KRS16DES KRS16REC	KRS11 KRS19DES KRS11REC 6603 KRS160ES KRS16DES KRS16DES KRS16REC	KRS11 KRS19DES KRS11REC 6903 KRS11REC 6903 KRS17 KRS17 KRS17DES KRS17DES KRS17REC 2802	KRS13 KRS13DES KRS13REC 7203 KRS17EC KRS17DES KRS17DES KRS17DES
GP 500M GP 300B GP 300B GP 400B GP 500B GP 500B GP 300M+300M KRS KRSDES (***) KRSREC (***) MOACAD NS A/E (*) GP 300M+300M GP 300M+400M GP 400M+400M GP 400M+500M GP 500M+500M GP 400M+500M GP 400M+500M GP 500M+500M KRS KRSDES (***) KRSDES (***) KRSREC (***)	KRS10DES KRS10REC 3202 KRS14 KRS14 KRS14DES KRS14REC 1251 502	KRS10DES KRS10REC 3402 KRS13 KRS13 KRS13DES KRS13PEC 1401 502	KRS11DES KRS11REC 3602 KRS12 KRS12 KRS12DES KRS12DES KRS12DES KRS12REC	KRS10 KRS10DES KRS10REC 3902 ✓ KRS13 KRS13DES KRS13DES KRS13PEC	KRS11 KRS11DES KRS11REC 4202 KRS13 KRS13DES KRS13DES KRS13DES KRS13REC	KRS11 KRS11DES KRS11REC 4502 KRS14 KRS14 KRS14DES KRS14PEC 2401 506	KRS11 KRS19DES KRS11REC 4802 KRS14 KRS14DES KRS14PEC 1402 502	KRS11 KRS19DES KRS11REC 5002 ✓ KRS14 KRS14DES KRS14PEC 1602 502	KRS10 KRS18DES KRS10REC 5202 ✓ KRS14 KRS14DES KRS14PEC 1802 503	KRS10 KRS18DES KRS10REC 5402 KRS14 KRS14 KRS14DES KRS14PES KRS14PES 5002	KRS11 KRS19DES KRS11REC 5702 KRS14 KRS14 KRS14DES KRS14REC 2202 505	KRS11 KRS19DES KRS11REC 6003 KRS15 KRS15 KRS15ES KRS15ES KRS15DES KRS15DES	KRS11 KRS19DES KRS11REC 6303 KRS16 KRS16 KRS16ES KRS16EE 2502	KRS11 KRS19DES KRS11REC 6603 KRS16 KRS16 KRS16ES KRS16ES KRS16ES KRS16ES 511	KRS11 KRS19DES KRS11REC 6903 KRS17 KRS17DES KRS17DES KRS17EC 2802 511	KRS13 KRS13DES KRS13REC 7203 KRS17EC KRS17 KRS17DES KRS17REC 3002 509
GP 500M GP 300B GP 300B GP 400B GP 500B GP 500B GP 300M+300M KRS KRSDES (***) KRSREC (***) MOACAL NS A/E (*) GP 300M+300M GP 300M+400M GP 400M+400M GP 400M+500M GP 500M+500M GP 400M+500M GP 400M+500M GP 400M+500M SP 500M+500M KRS KRSDES (***) KRSDES (***) KRSREC (***)	KRS10DES KRS10REC 3202 KRS14 KRS14 KRS14DES KRS14REC 1251 502 1251	KRS10DES KRS10REC 3402 KRS13 KRS13 KRS13DES KRS13DES KRS13REC 1401 502 1401	KRS11DES KRS11REC 3602 KRS12 KRS12DES KRS12DES KRS12DES KRS12DES KRS12DES	KRS10 KRS10DES KRS10REC 3902 KRS13 KRS13DES KRS13DES KRS13REC 1801 501 1801	KRS11 KRS11DES KRS11REC 4202 KRS13 KRS13DES KRS13DES KRS13DES KRS13REC 2101 506 2101	KRS11 KRS11DES KRS11REC 4502 KRS14 KRS14DES KRS14DES KRS14PEC 2401 506 2401	KRS11 KRS19DES KRS11REC 4802 KRS14 KRS14DES KRS14DES KRS14PEC 1402 502 1402	KRS11 KRS19DES KRS11REC 5002 KRS14 KRS14DES KRS14HEC 1602 502 1602	KRS10 KRS18DES KRS10REC 5202 KRS14 KRS14DES KRS14DES KRS14DES KRS14REC 1802 503 1802	KRS10 KRS18DES KRS10REC 5402 KRS14 KRS14 KRS14DES KRS14PEC 2002 2002	KRS11 KRS19DES KRS11REC 5702 KRS14 KRS14 KRS14DES KRS14PEC 2202 505 2202	KRS11 KRS19DES KRS11REC 6003 KRS15 KRS15 KRS15DES KRS15DES KRS15DES KRS15DES KRS15DES KRS15DES KRS15DES	KRS11 KRS19DES KRS11REC 6303 KRS16 KRS16DES KRS16DES KRS16REC 2502 505 2502	KRS11 KRS19DES KRS11REC 6603 KRS160ES KRS16DES KRS16REC 2652 511 2602	KRS11 KRS19DES KRS11REC 6903 KRS117 KRS17 KRS17DES KRS17DES KRS17REC 2802 511 2802	KRS13 KRS13DES KRS13REC 7203 KRS17 KRS17 KRS17DES KRS17REC 3002 509 3002
GP 500M GP 300B GP 400B GP 400B GP 500B GP 500B GP 500B GP 300M+300M KRS KRSDES (***) MOA@Ab NS A/E (*) GP 300M+300M GP 300M+400M GP 400M+400M GP 400M+500M GP 400M+500M GP 500M+500M GP 400M+500M GP 400M+500M GP 400M+500M GP 400M+500M GP 400M+500M GP 40M+500M GP 500M+500M GP 40M+500M+500M GP 40M+500M+500M GP 500M+500M KRS KRSDES (***) KRSDES (***) KRSNEC (***)	KRS10DES KRS10REC 3202 KRS14 KRS14 KRS14DES KRS14REC 1251 502 1251 3202	KRS10DES KRS10REC 3402 KRS13 KRS13DES KRS13DES KRS13REC 1401 502 1401 3402	KRS11DES KRS11REC 3602 KRS12 KRS12DES KRS12DES KRS12DES KRS12DES KRS12REC 1601 3602	KRS10 KRS10DES KRS10REC 3902 KRS13 KRS13DES KRS13DES KRS13PEC 1801 1801 3902	KRS11 KRS11DES KRS11REC 4202 KRS13 KRS13DES KRS13DES KRS13REC 2101 506 2101 4202	KRS11 KRS11DES KRS11REC 4502 KRS14 KRS14DES KRS14PEC 2401 2401 4502	KRS11 KRS19DES KRS11REC 4802 KRS14 KRS14DES KRS14DES KRS14DES KRS14DES L402 1402 4802	KRS11 KRS19DES KRS11REC 5002 KRS14 KRS14DES KRS14DES KRS14PEC 1602 1602 5002	KRS10 KRS18DES KRS10REC 5202 KRS14 KRS14DES KRS14DES KRS14BES KRS14REC 1802 5202	KRS10 KRS18DES KRS10REC 5402 KRS14 KRS14 KRS14DES KRS14HEC 2002 504 2002 5402	KRS11 KRS19DES KRS11REC 5702 KRS14 KRS14DES KRS14PEC 2202 5505 2202 5702	KRS11 KRS19DES KRS11REC 6003 KRS15 KRS15 KRS15DES KRS15DES KRS15DES CONTROL OF CONTROL	KRS11 KRS19DES KRS11REC 6303 KRS16 KRS16 KRS16DES KRS16REC 2502 2502 6303	KRS11 KRS19DES KRS11REC 6603 KRS16 KRS16 KRS16DES KRS16REC 2652 2652 2602 6603	KRS11 KRS19DES KRS11REC 6903 KRS17 KRS17 KRS17DES KRS17REC 2802 2802 6903	KRS13 KRS13DES KRS13REC 7203 KRS17EC 3002 3002 7203
GP 500M GP 300B GP 300B GP 400B GP 500B GP 300M+300M KRS KRSDES (***) KRSREC (***) MOACAL NS A/E (*) GP 300M+300M GP 300M+400M GP 400M+400M GP 400M+500M GP 500M+500M GP 400M+500M GP 400M+500M GP 400M+500M SP 400M+500M SP 500M+500M KRS KRSDES (***) KRSDES (***) KRSREC (***)	KRS10DES KRS10REC 3202 KRS14 KRS14 KRS14DES KRS14REC 1251 502 1251	KRS10DES KRS10REC 3402 KRS13 KRS13 KRS13DES KRS13DES KRS13REC 1401 502 1401	KRS11DES KRS11REC 3602 KRS12 KRS12DES KRS12DES KRS12DES KRS12DES KRS12DES	KRS10 KRS10DES KRS10REC 3902 KRS13 KRS13DES KRS13DES KRS13REC 1801 501 1801	KRS11 KRS11DES KRS11REC 4202 KRS13 KRS13DES KRS13DES KRS13DES KRS13REC 2101 506 2101	KRS11 KRS11DES KRS11REC 4502 KRS14 KRS14DES KRS14DES KRS14PEC 2401 506 2401	KRS11 KRS19DES KRS11REC 4802 KRS14 KRS14DES KRS14DES KRS14PEC 1402 502 1402	KRS11 KRS19DES KRS11REC 5002 KRS14 KRS14DES KRS14HEC 1602 502 1602	KRS10 KRS18DES KRS10REC 5202 KRS14 KRS14DES KRS14DES KRS14DES KRS14REC 1802 503 1802	KRS10 KRS18DES KRS10REC 5402 KRS14 KRS14 KRS14DES KRS14PEC 2002 2002	KRS11 KRS19DES KRS11REC 5702 KRS14 KRS14 KRS14DES KRS14PEC 2202 505 2202	KRS11 KRS19DES KRS11REC 6003 KRS15 KRS15 KRS15DES KRS15DES KRS15DES KRS15DES KRS15DES KRS15DES KRS15DES	KRS11 KRS19DES KRS11REC 6303 KRS16 KRS16DES KRS16DES KRS16REC 2502 505 2502	KRS11 KRS19DES KRS11REC 6603 KRS160ES KRS16DES KRS16REC 2652 511 2602	KRS11 KRS19DES KRS11REC 6903 KRS117 KRS17 KRS17DES KRS17DES KRS17REC 2802 511 2802	KRS13 KRS13DES KRS13DES KRS13REC 7203 KRS17 KRS17DES KRS17DES KRS17REC 3002 509 3002
GP 500M GP 300B GP 400B GP 400B GP 500B GP 500B GP 300M+300M KRS KRSDES (***) KRSREC (***) MOACAD NS A/E (*) GP 300M+300M GP 300M+400M GP 400M+400M GP 400M+500M GP 400M+500M GP 500M+500M GP 400M+500M GP 400M+500M GP 400M+500M GP 400M+500M GP 40M+500M+500M GP 40M+500M+500M GP 40M+500M+500M GP 40M+500M+500M KRS KRSDES (***) KRSREC (***)	KRS10DES KRS10REC 3202 V KRS14 KRS14DES KRS14PEC 1251 502 1251 3202 509	KRS10DES KRS10REC 3402 KRS13 KRS13DES KRS13DES KRS13PEC 1401 502 1401 3402 509	KRS11DES KRS11REC 3602 KRS12 KRS12DES KRS12DES KRS12PEC 1601 502 1601 502 507	KRS10 KRS10DES KRS10DES KRS10REC 3902 KRS13 KRS13DES KRS13DES KRS13REC 1801 501 1801 508	KRS11 KRS11DES KRS11REC 4202 KRS13 KRS13DES KRS13DES KRS13DES 2101 506 2101 2102 508	KRS11 KRS11DES KRS11DES KRS11REC 4502 KRS14 KRS14DES KRS14PEC 2401 506 2401 4502 516	KRS11 KRS19DES KRS11REC 4802 KRS14 KRS14DES KRS14PEC 1402 1402 1402 4802 516	KRS11 KRS19DES KRS11REC 5002 KRS14 KRS14DES KRS14PEC 1602 502 1602 5002 532	KRS10 KRS18DES KRS10REC 5202 KRS14 KRS14DES KRS14DES KRS14DES KRS14REC 1802 503 1802 5202 533	KRS10 KRS18DES KRS10REC 5402 KRS14 KRS14DES KRS14DES KRS14DES KRS14PEC 2002 504 2002 5402 533	KRS11 KRS19DES KRS11REC 5702 KRS14 KRS14DES KRS14HEC 2202 505 2202 5702 534	KRS11 KRS19DES KRS11REC 6003 KRS15 KRS15DES KRS15REC 2352 505 2352 6003 517	KRS11 KRS19DES KRS11REC 6303 KRS116 KRS16DES KRS16DES KRS16REC 2502 505 2502 505 6303 515	KRS11 KRS19DES KRS11REC 6603 KRS16 KRS16DES KRS16REC 2652 511 2602 6603 515	KRS11 KRS19DES KRS11REC 6903	KRS13 KRS13DES KRS13REC 7203 KRS17DES KRS17DES KRS17DES 509 3002 509 3002 7203 523
GP 500M GP 300B GP 300B GP 400B GP 500B GP 500B GP 300M+300M KRS KRSDES (***) KRSREC (***) MOACAL NS A/E (*) GP 300M+300M GP 300M+400M GP 400M+400M GP 400M+500M GP 500M+500M GP 400M+500M GP 500M+500M GP 400M+500M CP 400M+500M GP 400M+500M KRS KRSDES (***) KRSDES (***) KRSREC (***)	KRS10DES KRS10REC 3202 V KRS14 KRS14DES KRS14PEC 1251 502 1251 3202 509	KRS10DES KRS10REC 3402 KRS13 KRS13DES KRS13DES KRS13PEC 1401 502 1401 3402 509	KRS11DES KRS11REC 3602 KRS12 KRS12DES KRS12DES KRS12PEC 1601 502 1601 502 507	KRS10 KRS10DES KRS10DES KRS10REC 3902 KRS13 KRS13DES KRS13DES KRS13REC 1801 501 1801 508	KRS11 KRS11DES KRS11REC 4202 KRS13 KRS13DES KRS13DES KRS13DES 2101 506 2101 2102 508	KRS11 KRS11DES KRS11DES KRS11REC 4502 KRS14 KRS14DES KRS14PEC 2401 506 2401 4502 516	KRS11 KRS19DES KRS11REC 4802 KRS14 KRS14DES KRS14PEC 1402 1402 1402 4802 516	KRS11 KRS19DES KRS11REC 5002 KRS14 KRS14DES KRS14PEC 1602 502 1602 5002 532	KRS10 KRS18DES KRS10REC 5202 KRS14 KRS14DES KRS14DES KRS14DES KRS14REC 1802 503 1802 5202 533	KRS10 KRS18DES KRS10REC 5402 KRS14 KRS14DES KRS14DES KRS14DES KRS14PEC 2002 504 2002 5402 533	KRS11 KRS19DES KRS11REC 5702 KRS14 KRS14DES KRS14HEC 2202 505 2202 5702 534	KRS11 KRS19DES KRS11REC 6003 KRS15 KRS15DES KRS15REC 2352 505 2352 6003 517	KRS11 KRS19DES KRS11REC 6303 KRS116 KRS16DES KRS16DES KRS16REC 2502 505 2502 505 6303 515	KRS11 KRS19DES KRS11REC 6603 KRS16 KRS16DES KRS16REC 2652 511 2602 6603 515	KRS11 KRS19DES KRS11REC 6903	KRS13 KRS13DES KRS13REC 7203 KRS17DES KRS17DES KRS17DES S002 509 3002 7203 523
GP 500M GP 300B GP 300B GP 400B GP 500B GP 500B GP 300M+300M KRS KRSDES (***) KRSREC (***) MOACAL NS A/E (*) GP 300M+300M GP 300M+400M GP 400M+400M GP 400M+500M GP 500M+500M GP 400M+500M GP 500M+500M GP 400M+500M CP 400M+500M GP 400M+500M KRS KRSDES (***) KRSDES (***) KRSREC (***)	KRS10DES KRS10REC 3202 KRS14 KRS14 KRS14DES KRS14PEC 1251 502 1251 3202 509 3202	KRS10DES KRS10REC 3402 KRS13 KRS13DES KRS13DES KRS13REC 1401 502 1401 3402 509 3402	KRS11DES KRS11REC 3602 KRS12 KRS12DES KRS12DES KRS12DES 1601 502 1601 3602 507 3602	KRS10 KRS10DES KRS10REC 3902 KRS13 KRS13DES KRS13REC 1801 501 1801 3902 508 3902	KRS11 KRS11DES KRS11REC 4202 KRS13 KRS13DES KRS13DES KRS13REC 2101 506 2101 4202 508 4202	KRS11 KRS11DES KRS11REC 4502 KRS14 KRS14DES KRS14PEC 2401 506 2401 4502 516 4502	KRS11 KRS19DES KRS11REC 4802 KRS14 KRS14DES KRS14PEC 1402 1402 4802 1402 4802	KRS11 KRS19DES KRS11REC 5002 KRS14 KRS14DES KRS14PEC 1602 502 1602 502 5032 5002	KRS10 KRS18DES KRS10REC 5202 KRS14 KRS14DES KRS14HEC 1802 503 1802 5202 533 5202	KRS10 KRS18DES KRS10REC 5402 KRS14 KRS14 KRS14DES KRS14PEC 2002 504 2002 5402 533 5402	KRS11 KRS19DES KRS11REC 5702 KRS14 KRS14 KRS14DES KRS14HEC 2202 505 2202 5702 534 5702	KRS11 KRS19DES KRS11REC 6003 KRS15 KRS15 KRS15DES KRS15DES KRS15DES CONTROL C	KRS11 KRS19DES KRS11REC 6303 KRS16ES KRS16DES K	KRS11 KRS19DES KRS11REC 6603 KRS160ES KRS16DES KRS16REC 2652 511 2602 6603 515 6603	KRS11 KRS19DES KRS11REC 6903 KRS11REC 6903 KRS17 KRS17DES KRS17DES KRS17REC 2802 6903 523 6903	KRS13 KRS13DES KRS13REC 7203 KRS17 KRS17DES KRS17DES KRS17DES 509 3002 7203 523 7203
GP 500M GP 300B GP 400B GP 400B GP 500B GP 500B GP 300M+300M KRS KRSDES (***) KRSREC (***) MOACAЬ NS A/E (*) GP 300M+400M GP 300M+400M GP 400M+500M GP 400M+500M GP 500M+500M GP 400M+500M GP 400M+500M GP 400M+500M GP 400K+50OM GP 40OK-50OM GP 50OK-50OK KRS KRSDES (***) KRSREC (***) MOACAЬ NS °/L AVX RIFNS MOACAЬ NS A/E AVX RIFNS	KRS10DES KRS10REC 3202 V KRS14 KRS14DES KRS14REC 1251 502 1251 3202 509 3202 1251 502 1251	KRS10DES KRS10REC 3402 KRS13 KRS13DES KRS13DES KRS13DES 1401 502 1401 1401 502 1401 1401	KRS11DES KRS11REC 3602 KRS12 KRS12DES KRS12DES KRS12PEC 1601 502 1601 1601 502 1601	KRS10 KRS10DES KRS10DES KRS10REC 3902 KRS13 KRS13DES KRS13DES KRS13DES KRS13DES 508 3902 1801 506 1801	KRS11 KRS11DES KRS11REC 4202 KRS13 KRS13DES KRS13DES KRS13DES 506 2101 506 4202 2101 510 2101	KRS11 KRS11DES KRS11REC 4502 KRS14 KRS14DES KRS14DES KRS14DES 506 2401 2401 516 4502	KRS11 KRS19DES KRS11REC 4802 KRS14 KRS14DES KRS14DES L402 L402 L402 L402 L402 L402 L402 L402	KRS11 KRS19DES KRS11REC 5002 KRS14 KRS14DES KRS14DES 502 1602 502 502 1602 503 1602	KRS10 KRS18DES KRS10REC 5202 KRS14 KRS14 KRS14DES KRS14REC 1802 503 1802 5202 1802 533 5202	KRS10 KRS18DES KRS10REC 5402 KRS14 KRS14 KRS14DES KRS14REC 2002 504 2002 5402 533 5402 2002 511 2002	KRS11 KRS19DES KRS11REC 5702 KRS14 KRS14DES KRS14REC 2202 505 2202 5702 534 5702 2202 511 2202	KRS11 KRS19DES KRS11REC 6003 KRS115 KRS15 KRS15DES KRS15REC 2352 505 2352 6003 517 6003 2352 511 2352	KRS11 KRS19DES KRS11REC 6303 KRS116 KRS16DES KRS16REC 2502 505 2502 505 2502 501 2502 511 2502	KRS11 KRS19DES KRS11REC 6603 ✓ KRS16 KRS16DES KRS16REC 2652 511 2602 2652 511 2602	KRS11 KRS19DES KRS11REC 6903	KRS13 KRS13DES KRS13REC 7203 7203 KRS17DES KRS17DES KRS17DES 509 3002 509 3002 7203 523 7203
GP 500M GP 300B GP 400B GP 400B GP 500B GP 500B GP 500B GP 300M+300M KRS KRSDES (***) KRSREC (***) MOACAL NS A/E (*) GP 300M+300M GP 300M+400M GP 400M+400M GP 400M+500M GP 500M+500M GP 500M+500M GP 400M+500M+500M GP 400M+500M+500M KRS KRSDES (***) KRSREC (***) MOACAL NS °/L AVX RIFNS MOD. NS A/E	KRS10DES KRS10REC 3202 KRS14 KRS14 KRS14DES KRS14PEC 1251 3202 1251 3202	KRS10DES KRS10REC 3402 KRS13 KRS13 KRS13DES KRS13REC 1401 3402 1401 1401 509 3402 1401 1401 3402	KRS11DES KRS11REC 3602 KRS12 KRS12 KRS12DES KRS12DES KRS12REC 1601 3602 1601 3602	KRS10 KRS10DES KRS10DES KRS10REC 3902 KRS13 KRS13ES KRS13ES KRS13DES KRS13REC 1801 501 1801 3902 1801 506 1801 3902	KRS11 KRS11DES KRS11REC 4202 KRS13 KRS13DES KRS13DES KRS13REC 2101 506 2101 4202 508 4202 2101 2101 4202	KRS11 KRS11DES KRS11REC 4502 KRS14 KRS14DES KRS14PEC 2401 4502 2401 4502 2401 4502	KRS11 KRS19DES KRS11REC 4802 KRS14 KRS14DES KRS14PEC 1402 1402 4802 1402 4802 1402 4802	KRS11 KRS19DES KRS11REC 5002 KRS14 KRS14DES KRS14PEC 1602 502 1602 5032 5002 1602 5032 5002	KRS10 KRS18DES KRS10REC 5202 KRS14 KRS14DES KRS14PEC 1802 503 1802 5202 1802 5202 1802 5202 533 5202 504	KRS10 KRS18DES KRS10REC 5402	KRS11 KRS19DES KRS11REC 5702 5702 KRS14 KRS14 KRS14DES KRS14REC 2202 505 2202 5702 534 5702 2202 5511 2202 5702	KRS11 KRS19DES KRS11REC 6003 KRS15 KRS15DES KRS15DES KRS15DES CONTROL	KRS11 KRS19DES KRS11REC 6303 KRS116 6303 KRS16DES KRS16DES KRS16DES KRS16REC 2502 6303 2502 6303 2502 6303	KRS11 KRS19DES KRS11REC 6603 ✓ KRS16 KRS16DES KRS16DES KRS16REC 2652 511 2602 6603 2652 511 2602 6603	KRS11 KRS19DES KRS11REC 6903	KRS13 KRS13DES KRS13REC 7203 7203 KRS17EC 3002 509 3002 7203 523 7203 3002 509 3002 7203
GP 500M GP 300B GP 400B GP 400B GP 500B GP 500B GP 300M+300M KRS KRSDES (***) KRSREC (***) MOACAD NS A/E (*) GP 300M+300M GP 300M+400M GP 400M+500M GP 400M+500M GP 400M+500M GP 400M+500M GP 500M+500M GP 400M+500M GP 400M+500M GP 40M+500M+500M GP 40M+500M+500M GP 40M+500M+500M GP 40M+500M+500M GP 40M+500M+500M GP 50M+500M+500M KRS KRSDES (***) KRSDES (***) KRSDES (***) KRSPEC (***) MOACAD NS °/L AVX RIFNS MOd. NS °/L AVX RIFNS	KRS10DES KRS10REC 3202 V KRS14 KRS14DES KRS14REC 1251 502 1251 3202 509 3202 1251 502 1251	KRS10DES KRS10REC 3402 KRS13 KRS13DES KRS13DES KRS13DES 1401 502 1401 1401 502 1401 1401	KRS11DES KRS11REC 3602 KRS12 KRS12DES KRS12DES KRS12PEC 1601 502 1601 1601 502 1601	KRS10 KRS10DES KRS10DES KRS10REC 3902 KRS13 KRS13DES KRS13DES KRS13DES KRS13DES 508 3902 1801 506 1801	KRS11 KRS11DES KRS11REC 4202 KRS13 KRS13DES KRS13DES KRS13DES 506 2101 506 4202 2101 510 2101	KRS11 KRS11DES KRS11REC 4502 KRS14 KRS14DES KRS14DES KRS14DES 506 2401 2401 516 4502	KRS11 KRS19DES KRS11REC 4802 KRS14 KRS14DES KRS14DES L402 L402 L402 L402 L402 L402 L402 L402	KRS11 KRS19DES KRS11REC 5002 KRS14 KRS14DES KRS14DES 502 1602 502 502 1602 503 1602	KRS10 KRS18DES KRS10REC 5202 KRS14 KRS14 KRS14DES KRS14REC 1802 503 1802 5202 1802 533 5202	KRS10 KRS18DES KRS10REC 5402 KRS14 KRS14 KRS14DES KRS14REC 2002 504 2002 5402 533 5402 2002 511 2002	KRS11 KRS19DES KRS11REC 5702 KRS14 KRS14DES KRS14REC 2202 505 2202 5702 534 5702 2202 511 2202	KRS11 KRS19DES KRS11REC 6003 KRS115 KRS15 KRS15DES KRS15REC 2352 505 2352 6003 517 6003 2352 511 2352	KRS11 KRS19DES KRS11REC 6303 KRS116 KRS16DES KRS16REC 2502 505 2502 505 2502 501 2502 511 2502	KRS11 KRS19DES KRS11REC 6603 ✓ KRS16 KRS16DES KRS16REC 2652 511 2602 2652 511 2602	KRS11 KRS19DES KRS11REC 6903	KRS13 KRS13DES KRS13REC 7203 7203 KRS17DES KRS17DES KRS17DES 509 3002 509 3002 523 7203 3002 509 3002

Примечание:
(*) Устанавливается на заводе изготовителе
Число в скобках (х3) указывает количество.
(**) Поставляется стандартно для модификаций L-E-D
(***) Опция KRSDES/KRSREC включает в себя электрообогрев испарителя и электрообогрев рекуператора.

						COBM	ЛЕСТИМ	1ОСТЬ І	DCPX							
Mod. NS °	1251	1401	1601	1801	2101	2401	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002
DCPX (**)	65(x1)	65(x1)	65(x1)	65(x1)	69(x1)	69(x1)	69(x1)	68(x1)	68(x1)	68(x1)	68(x1)	68(x1)	68(x1)	68(x1)	68(x1)	68(x1)
Mod. NS °	3202	3402	3602	3902	4202	4502	4802	5002	5202	5402	5702	6003	6303	6603	6903	7203
DCPX (**)	68(x1)	68(x1)	68(x1)	72(x1)	72(x1)	73(x1)	73(x1)	73(x1)	73(x1)	73(x1)	73(x1)	68+76	72+76	72+76	73+76	73+76
Mod. NS A	1251	1401	1601	1801	2101	2401	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002
DCPX (**)	65(x1)	65(x1)	65(x1)	69(x1)	69(x1)	69(x1)	68(x1)	68(x1)	68(x1)	68(x1)	68(x1)	68(x1)	68(x1)	68(x1)	68(x1)	68(x1)
Mod. NS A	3202	3402	3602	3902	4202	4502	4802	5002	5202	5402	5702	6003	6303	6603	6903	7203
DCPX (**)	68(x1)	72(x1)	73(x1)	73(x1)	73(x1)	73(x1)	73(x1)	73(x1)	73(x1)	73(x1)	73(x1)	73+76	73+76	73+76	73+76	73+76
												_				
				DCPX,	для мод	ификац	ций с ув	еличен	ными ве	нтилят	рами					
Mod. NS °	1251	1401	1601	DCPX ,	ДЛЯ МОД 2101	ифика 2401	ций с ув 1402	еличені 1602	ными ве 1802	РНТИЛЯТО 2002	рами 2202	2352	2502	2652	2802	3002
Mod. NS °	1251 69(x1)	1401 69(x1)	1601 69(x1)									2352 68(x1)	2502 68(x1)	2652 68(x1)	2802 68(x1)	3002 73(x1)
Mod. NS °				1801	2101	2401	1402	1602	1802	2002	2202					
	69(x1)	69(x1)	69(x1)	1801 69(x1)	2101 69(x1)	2401 69(x1)	1402 68(x1)	1602 68(x1)	1802 68(x1)	2002 68(x1)	2202 68(x1)	68(x1)	68(x1)	68(x1)	68(x1)	73(x1)
	69(x1) 3202	69(x1) 3402	69(x1) 3602	1801 69(x1) 3902	2101 69(x1) 4202	2401 69(x1) 4502	1402 68(x1) 4802	1602 68(x1) 5002	1802 68(x1) 5202	2002 68(x1) 5402	2202 68(x1) 5702	68(x1) 6003	68(x1) 6303	68(x1) 6603	68(x1) 6903	73(x1) 7203
	69(x1) 3202	69(x1) 3402	69(x1) 3602	1801 69(x1) 3902	2101 69(x1) 4202	2401 69(x1) 4502	1402 68(x1) 4802	1602 68(x1) 5002	1802 68(x1) 5202	2002 68(x1) 5402	2202 68(x1) 5702	68(x1) 6003	68(x1) 6303	68(x1) 6603	68(x1) 6903	73(x1) 7203
Mod. NS °	69(x1) 3202 73(x1)	69(x1) 3402 73(x1)	69(x1) 3602 73(x1)	1801 69(x1) 3902 73(x1)	2101 69(x1) 4202 73(x1)	2401 69(x1) 4502 73(x1)	1402 68(x1) 4802 73(x1)	1602 68(x1) 5002 73(x1)	1802 68(x1) 5202 73(x1)	2002 68(x1) 5402 74(x1)	2202 68(x1) 5702 75(x1)	68(x1) 6003 73+76	68(x1) 6303 73+76	68(x1) 6603 73+76	68(x1) 6903 73+76	73(x1) 7203 73+76
Mod. NS °	69(x1) 3202 73(x1) 1251	69(x1) 3402 73(x1)	69(x1) 3602 73(x1)	1801 69(x1) 3902 73(x1)	2101 69(x1) 4202 73(x1) 2101	2401 69(x1) 4502 73(x1) 2401	1402 68(x1) 4802 73(x1)	1602 68(x1) 5002 73(x1)	1802 68(x1) 5202 73(x1)	2002 68(x1) 5402 74(x1) 2002	2202 68(x1) 5702 75(x1)	68(x1) 6003 73+76	68(x1) 6303 73+76	68(x1) 6603 73+76	68(x1) 6903 73+76	73(x1) 7203 73+76

Примечание:

- (*) опция может быть установлена только на заводе-изготовителе,
- ⁺) опция поставляется стандартно для модификации L-E-D.
- Цифра в скобках, напр. (х3) обозначает количество.

Выбор модификации

Комбинируя различные опции, можно подобрать необходимую конфигурацию холодильной машины, которая наиболее полно отвечает требованиям заказчика.

Кодовые обозначения опций:

Код:

Типоразмер:

1251, 1401, 1601, 1801, 2101, 2401, 1402,1602, 1802, 2002, 2202, 2352, 2502, 2652, 2802, 3002, 3202,3402, 3602, 3902,4202,4502, 4802, 5002, 5202, 5402, 5702, 6003, 6303, 6603, 6903, 7203

Хладагент:

- хладагент R134a, механический терморегулирующий вентиль, температура воды + 4°C
- Y хладагент R134a, механический терморегулирующий
- вентиль, температура воды 6°C X хладагент R134a, электронный терморегулирующий вентиль, температура воды - 6°C

Модель:

- только охлаждение, с испарителем стандарта PED

Рекуперация тепла:

- без рекуперации
- D с частичной рекуперацией
- Т с полной рекуперацией

Модификация:

- стандартная
- L низкошумная
- A повыше́нной эффективности
- Е повышенной эффективности, с пониженным уровнем шума

Теплообменник:

- из алюминия
- R из меди
- S из меди с оловянным покрытием
- V из меди с алюминиевым оребрением с покрытием из ЭПОКСИДНЫХ СМОЛ

Вентиляторы:

- ° стандартные М увеличенного размера

J - с инверторным управлением

- электропитание:

 ° 400 В, трехфазное, 50 Гц, с плавкими предохранителями 2 230 В, трехфазное, 50 Гц, с плавкими предохранителями * 4 230 В, трехфазное, 50 Гц, с термомагнитными размыкателями *

- не поставляется для типоразмеров 1251 2401, 2352 ~ 7203
- 5 500 В, трехфазное, 50 Гц, с плавким предохранителем** 8 400 В, трехфазное, 50 Гц, с термомагнитными

- размыкателями 9 500 В, трехфазное, 50 Гц, с термомагнитным размыкателем**
- не поставляется для типоразмеров 1801 3402~7203

Насосный агрегат:

- 00 без насосного агрегата
- РА с насосным агрегатом (насос А)
- РВ с насосным агрегатом (насос А + резервный насос)
- РС с насосным агрегатом (насос C) РD с насосным агрегатом (насос С + резервный насос) РЕ с насосным агрегатом (насос E)

- с насосным агрегатом (насос Е + резервный насос)
- PG с насосным агрегатом (насос G)
- РН с насосным агрегатом (насос G + резервный насос)
- PJ с насосным агрегатом (насос J)
- РК с насосным агрегатом (насос Ј + резервный насос)

Внимание:

- стандартные модификации обозначаются символом °
- опции D-T-C не совместимы с опцией Y
- электропитание 500В трехфазное 50 Гц поставляется только с опцией М (увеличенный размер вентиляторов)
- типоразмеры 5002-5202-5402-5702 поставляются только с электронным ТРВ (опция Х)

Пример расшифровки кодового обозначения:

NS1401LR8PA это холодильная машина NS типоразмера 1401 с механическим терморегулирующим вентилем, работающая только на охлаждение, стандартная с пониженным уровнем шума, без системы рекуперации тепла, с медным теплообменником конденсатора, стандартными вентиляторами, электропитанием от трехфазного напряжения 400 В, 50 Гц, с насосным агрегатом А.

Модель NS	Модиф.	1251	1401	1601	1801	2101	2401	1402	1602
Холодопроизводительность (кВт)	(°)	259	294	336	385	443	493	282	317
лолодопроизводительность (квт)	L	238	265	308	361	412	454	259	287
	A	276	314	347	420	466	533	304	345
	E	252	291	330	391	432	497	273	314
Downer Horn House (VPT)	(°)	91	108	117	145	166	180	102	121
Полная потр. мощность (кВт)	L	97	113	124	150	170	185	106	125
	A	88	97	104	134	150	165	97	109
	Е	90	101	109	140	155	172	101	115
Расход воды (Л/ч)	(°)	44550	50570	57790	66220	76200	84800	48500	54520
гасход воды (л/ч)	L	40940	45580	52980	62090	70860	78090	44550	49360
	A	47470	54010	59680	72240	80150	91680	52290	59340
	Е	43340	50050	56760	67250	74300	85480	46960	54010
Падение давления (кПа)	(°)	42	44	45	58	37	43	39	47
падение давления (кпа)	L	35	36	38	51	32	36	33	39
	<u>A</u>	45	39	25	45	38	47	30	39
	E	38	33	23	39	33	41	24	32
EER	(°)	2,85	2,72	2,87	2,66	2,67	2,75	2,77	2,62
EEK	L	2,45	2,34	2,48	2,41	2,42	2,45	2,44	2,29
	<u>A</u>	3,14	3,24	3,34	3,13	3,11	3,23	3,13	3,17
	E	2,80	2,88	3,03	2,79	2,79	2,89	2,70	2,73
ESEER	(°)	3,81	3,75	3,70	3,73	3,78	3,76	3,88	3,72
ESEEK	L	3,70	3,64	3,59	3,62	3,67	3,65	3,76	3,61
	A	4,22	4,24	4,30	4,24	4,20	4,28	4,20	4,22
	E	4,09	4,11	4,17	4,11	4,07	4,15	4,07	4,09
	(°)	159	187	197	238	280	301	177	207
Полный потр. ток (А)	L	162	192	206	244	284	307	180	212
полный потр. ток (д)	A	154	172	181	222	256	279	171	190
	E	152	170	182	225	255	283	170	194
M (I D A) (A)	(°)-L	236	236	236	331	348	388	269	309
Максимальный ток (LRA) (A)	A-E	236	236	236	338	355	395	269	309
Dveveneš zev (FLA) (A)	(°)-L	381	425	425	486	614	678	245	283
Пусковой ток (FLA) (A)	A-E	381	425	425	493	621	685	245	283
Компрессоры (колво/конт.)	(Bce)	1	1	1	1	1	1	2	2
	(°)	116000	116000	110000	110000	150000	145000	116000	116000
Dagua , pag , pag (, , 2 / v)	L	82000	82000	82000	82000	110000	104000	82000	82000
Расход воздуха (м3/ч)	A	110000	106000	106000	136000	180000	174000	106000	106000
	E	70000	74000	81500	94000	113000	118000	74000	77000
D ()	(°)-L	6	6	6	6	8	8	6	6
Вентиляторы (кол-во)	A-E	6	6	6	8	10	10	6	6
	(°)	94	95	97	97	98	98	96	97
Privopag Houseast (dP)	L	86	87	89	89	90	90	88	89
Звуковая мощность (dB)	A	94	95	97	97	98	98	96	97
	E	86	87	89	89	90	90	88	89
	(°)	62	63	65	65	66	66	64	65
On wones a serious (dD)	L	54	55	57	57	58	58	56	57
Звуковое давление (dB)	A	62	63	65	65	66	66	64	65
	E	54	55	57	57	58	58	56	57

Электропитание – 400В 3 фазы 50Гц Указанные технические характеристики относятся к следующим условиям:

Звуковое давление измерено в свободном пространстве на расстоянии 10 м при коэффициенте направленности, равном 2 (в соответствии со стандартом ISO 3744)

- Охлаждение:

 температура воды на входе 12°С;

 температура воды на выходе 7°С;

 температура наружного воздуха 35°С;

 разность температур t = 5°С.

Технические характеристики

Mod. NS	Vers.	1802	2002	2202	2352	2502	2652	2802	3002
(B)	(°)	358	404	450	486	503	541	578	629
олодопроизводительность (кВт)	L	325	372	420	443	459	495	530	573
	A	397	450	495	519	543	577	612	661
	E	364	410	453	478	503	539	574	622
	(°)	138	154	171	177	187	202	216	225
, p.)	L	142	160	181	185	198	211	230	237
Толная потр. мощность (кВт)	A	127	144	157	166	173	182	197	201
	Е	130	150	161	171	181	192	207	210
	(°)	61580	69490	77400	83590	86520	93050	99420	108190
	L	5590	63980	72240	76200	78950	85140	91160	98560
асход воды (л/ч)	A	68280	77400	85140	89270	93400	99240	105260	113690
	E	62610	70520	77920	82220	86520	92710	98730	106980
	(°)	53	36	40	48	50	47	53	44
	L	44	31	35	40	42	39	45	37
Іадение давления (кПа)	A	35	44	39	42	46	48	55	32
	E	29	37	33	36	39	42	48	28
	(°)	2,59	2,62	2,63	2,74	2,70	2,68	2,67	2,79
ER	L	2,28	2,32	2,33	2,39	2,32	2,34	2,30	2,41
	A	3,13	3,13	3,15	3,13	3,14	3,17	3,11	3,29
	E	2,80	2,73	2,81	2,80	2,78	2,81	2,77	2,96
	(°)	3,69	3,59	3,56	3,82	3,81	3,73	3,78	3,68
SEER	I.	3,58	3,48	3,45	3,71	3,70	3,62	3,67	3,57
	A	4,20	4,23	4,24	4,23	4,25	4,25	4,21	4,28
	E	4,07	4,10	4,11	4,10	4,12	4,12	4,08	4,15
	(°)	218	261	295	306	322	347	371	384
	Ī	221	266	301	310	333	354	381	398
Іолный потр. ток (А)	A	215	248	274	288	301	320	339	353
	E	214	247	277	290	303	320	344	352
	(°)-L	345	372	392	425	458	458	458	472
Лаксимальный ток (LRA) (A)	A-E	352	379	399	432	465	465	465	472
	(°)-L	325	403	420	480	507	551	553	567
lусковой ток (FLA) (A)	A-E	332	410	427	487	514	558	560	567
омпрессоры (колво/конт.)		2	2	2	2	2	2	2	2
омпрессоры (колво/конт.)	(Bce)								
	(°)	110000	145000	145000	145000	145000	152000	152000	226000
асход воздуха (м3/ч)	L	82000	104000	104000	104000	104000	108000	108000	164000
,	A	144000	187500	180000	176500	173000	173000	173000	212000
	E (0) I	96000	124500	120000	123000	126000	130000	136000	155500
ентиляторы (кол-во)	(°)-L	6	8	8	8	8	8	8	12
сттикитеры (кем ве)	A-E	8	10	10	10	10	10	10	12
	(°)	97	98	98	97	98	98	98	99
вуковая мощность (dB)	L	89	90	90	90	90	90	91	90
D, RODAN MOLLIOCID (db)	A	97	98	98	97	98	98	98	99
	E	89	90	90	90	90	90	91	90
	(°)	65	66	66	65	66	66	66	66
вуковое давление(dB)	L	57	58	58	58	58	58	59	57
вуковое давлепие(ив)	A	65	66	66	65	66	66	66	66
	E	57	58	58	58	58	58	59	57

Электропитание – 400В 3 фазы 50Гц Указанные технические характеристики относятся к следующим условиям: Звуковое давление измерено в свободном пространстве на расстоянии 10 м при коэффициенте направленности, равном 2 (в соответствии со стандартом ISO 3744)

- Охлаждение:

 температура воды на входе 12°С;

 температура воды на выходе 7°С;

 температура наружного воздуха 35 °С;

 разность температур **∆**t = 5 °С.

Mod. NS	Vers.	3202	3402	3602	3902	4202	4502	4802	5002
	(°)	671	721	771	828	879	936	987	1063
/ (-P-)	L	616	669	722	773	815	866	907	984
Солодопроизводительность (кВт)	A	695	767	839	885	953	999	1066	1155
	E	660	721	782	822	888	928	994	1088
	(°)	235	262	290	311	324	345	359	390
(D)	L	248	274	300	320	335	355	370	405
Полная потр. мощность (кВт)	A	208	238	268	284	298	314	329	360
	E	218	249	280	295	312	327	344	376
	(°)	115410	124010	132610	142420	151190	160990	169760	182838
	L	105950	115070	124180	132960	140180	148950	156000	169250
Расход воды (л/ч)	A	119540	131920	144310	152220	163920	171830	183350	198662
	E	113520	124010	134500	141380	152740	159620	170970	187138
	(°)	38	50	58	46	50	40	43	40
	L	32	43	51	40	43	34	36	34
Падение давления (кПа)	A	25	35	45	41	46	43	47	42
	E	23	31	39	35	40	37	41	37
	(°)	2,86	2,75	2,66	2,66	2,71	2,71	2,75	2,73
ER	Ī.	2,48	2,44	2,41	2,42	2,43	2,44	2,45	2,43
	A	3,34	3,22	3,13	3,12	3,20	3,18	3,24	3,21
	E	3,03	2,90	2,79	2,79	2,85	2,84	2,89	2,89
	(°)	3,68	3,68	3,68	3,73	3,73	3,73	3,67	3,71
SEER	I	3,57	3,57	3,57	3,62	3,62	3,62	3,56	3,60
	A	4,30	4,26	4,19	4,18	4,24	4,17	4,17	4,25
	E	4,17	4,13	4,06	4,05	4,11	4,04	4,04	4,12
	(°)	394	435	477	519	540	582	603	648
	Ţ	411	450	488	527	551	591	613	670
Толный потр. ток (A)	A	362	403	444	478	501	535	558	614
•	E	364	407	450	480	508	538	566	626
	(°)-L	472	567	662	679	719	736	776	866
Максимальный ток (LRA) (A)	A-E	472	574	676	693	733	750	790	880
	(°)-L	567	628	654	778	825	900	900	1051
Тусковой ток (FLA) (A)	A-E								
·		567	635	661	792	839	914	914	1065
Компрессоры (колво/конт.)	(Bce)	2	2	2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2	2	2	2
	(°)	220000	220000	220000	260000	255000	295000	290000	297000
асход воздуха (м3/ч)	<u>L</u>	164000	164000	164000	192000	186000	214000	208000	212000
uened beedynu (men n	A	212000	242000	272000	316000	310000	354000	348000	346000
	E	163000	175500	188000	207000	212000	231000	236000	254000
Вентиляторы (кол-во)	(°)-L	12	12	12	14	14	16	16	16
сттиляторы (кол во)	A-E	12	14	16	18	18	20	20	20
	(°)	99	99	99	100	100	100	100	101
Ввуковая мощность (dB)	L	91	91	92	92	92	92	92	93
ы уковая мощпость (ub)	A	99	99	99	100	100	100	100	101
	E	91	91	92	92	92	92	92	93
	(°)	66	66	66	67	67	67	67	68
Privopoo Aonaouro (dp)	L	58	58	59	59	59	59	59	60
Ввуковое давление (dB)	A	66	66	66	67	67	67	67	68
	E	58	58	59	59	59	59	59	60

Электропитание – 400В 3 фазы 50Гц Указанные технические характеристики относятся к следующим условиям: Звуковое давление измерено в свободном пространстве на расстоянии 10 м при коэффициенте направленности, равном 2 (в соответствии со стандартом ISO 3744)

- Охлаждение:

 температура воды на входе 12°С;

 температура воды на выходе 7°С;

 температура наружного воздуха 35°С;

 разность температур t = 5°С.

Модель NS	Модиф.	5202	5402	5702	6003	6303	6603	6903	7203
	(°)	1140	1185	1230	1264	1321	1372	1430	1480
(L	1060	1105	1150	1176	1227	1268	1319	1361
олодопроизводительность (кВт)	A	1244	1287	1330	1372	1419	1486	1532	1600
	Е	1160	1198	1236	1278	1319	1384	1425	1490
	(°)	420	432	444	469	490	504	525	539
- (D)	L	440	454	467	485	505	520	540	555
Толная потр. мощность (кВт)	A	390	408	426	432	448	463	479	494
	E	407	426	444	452	467	484	499	516
	(°)	196082	203822	211562	217410	227210	235980	245960	254560
) (-/-)	L	182322	190062	197802	202270	211040	218100	226870	234090
асход воды (л/ч)	A	213970	221366	228763	235980	244070	255589	263500	275200
	E	199522	206058	212594	219820	226870	238050	245100	256280
	(°)	36	39	42	53	46	48	41	43
	L	31	34	37	46	40	41	35	36
Тадение давления (кПа)	A	37	39	42	45	43	46	44	47
	E	32	34	36	39	37	40	38	41
	(°)	2,71	2,74	2,77	2,69	2,69	2,72	2,72	2,75
ER	L	2,41	2,44	2,46	2,43	2,43	2,44	2,44	2,45
	A	3,19	3,15	3,12	3,18	3,17	3,21	3,20	3,24
	E	2,85	2,82	2,78	2,83	2,82	2,86	2,86	2,89
	(°)	3,71	3,69	3,69	3,76	3,78	3,76	3,81	3,76
SEER	L	3,60	3,58	3,58	3,65	3,67	3,65	3,70	3,65
	A	4,26	4,20	4,15	4,28	4,25	4,28	4,29	4,28
	E	4,13	4,07	4,03	4,15	4,12	4,15	4,16	4,15
	(°)	693	715	736	778	820	841	883	904
_	L	726	750	774	795	834	858	898	921
Толный потр. ток (А)	A	655	685	715	723	757	780	814	837
	E	670	700	735	733	763	791	821	849
	(°)-L	924	968	1012	1050	1067	1107	1124	1164
Лаксимальный ток (LRA) (A)	A-E	938	975	1012	1071	1088	1128	1145	1185
	(°)-L	1109	1228	1227	1013	1072	1064	1122	1122
Тусковой ток (FLA) (A)	A-E	1123	1235	1227	1034	1093	1085	1143	1143
Сомпрессоры (колво/конт.)	(Bce)	2	2	2	3	3	3	3	3
компрессоры (кольо/копт.)	(°)	304000	324000	360000	365000	405000	400000	440000	435000
	L	216000	240000	267000	268000	296000	290000	318000	312000
асход воздуха (м3/ч)	A	346000	346000	346000	446000	490000	484000	528000	522000
	E	272000	283500	295000	306000	325000	330000	349000	354000
	(°)-L	16	18	20	20	22	22	24	24
Вентиляторы (кол-во)	A-E	20	20	20	26	28	28	30	30
•	(°)	101	101	101	101	101	101	102	102
		93	93	93	93	93	93	93	94
вуковая мощность (dB)	L A	101	101	101	101	101	101	102	102
-	E	93	93	93	93	93	93	93	94
	(°)	68	68	68	68	68	68	69	68
		60	60	60		60	60	60	61
Ввуковое давление (dB)	L				60				
,	A	68	68	68	68	68	68	68	68
	E	60	60	60	60	60	60	59	60

Электропитание – 400В 3 фазы 50Гц Указанные технические характеристики относятся к следующим

условиям:
Звуковое давление измерено в свободном пространстве на расстоянии 10 м при коэффициенте направленности, равном 2 (в соответствии со стандартом ISO 3744)

- Охлаждение:

 температура воды на входе 12°C;

 температура воды на выходе 7°C;

 температура наружного воздуха 35°C;

 разность температур t = 5°C.

Модель NS			1251	1401	1601	1801	2101	2401	1402	1602
Высота	(A)		2450	2450	2450	2450	2450	2450	2450	2450
Ширина	(B)	,	2.200	2.200	2.200	2.200	2.200	2.200	2.200	2.200
	(0)	°/L	3780	3780	3780	3780	4770	4770	3780	3780
Глубина	(C)	A/E	3780	3780	3780	4770	5750	5750	3780	3780
1.4	1	°/L	2910	3060	3150	3650	4230	4570	3250	3270
Macca	kg	A/E	3050	3230	3250	4330	4920	5150	3420	3560
Модель NS			1802	2002	2202	2352	2502	2652	2802	3002
Высота	(A)		2450	2450	2450	2450	2450	2450	2450	2450
Ширина	(B)		2200	2200	2200	2200	2200	2200	2200	2200
	(0)	°/L	3780	4770	4770	4770	4770	5750	5750	7160
Глубина	(C)	A/E	4770	5750	5750	5750	5750	5750	5750	7160
	1	°/L	3460	4270	4740	4800	4900	5320	5330	6180
Масса	kg	A/E	3900	4700	5270	5390	5500	5510	5520	6450
Модель NS			3202	3402	3602	3902	4202	4502	4802	5002
Высота	(A)		2450	2450	2450	2450	2450	2450	2450	2450
Ширина	(B)		2200	2200	2200	2200	2200	2200	2200	2200
	(0)	°/L	7160	7160	7160	8150	8150	9140	9140	10120
Глубина	(C)	A/E	7160	8150	9140	10120	10120	11100	11100	11100
	1	°/L	6270	6770	7280	7830	8180	8750	9090	9360
Macca	kg	A/E	6520	7540	8610	9180	9410	9820	10200	10450
Модель NS		,	5202	5402	5702	6003	6303	6603	6903	7203
Высота	(A)		2450	2450	2450	2450	2450	2450	2450	2450
Ширина	(B)		2200	2200	2200	2200	2200	2200	2200	2200
•		°/L	11100	11100	11100	11530	12520	12520	13510	13510
Глубина	(C)	A/E	11100	11100	11100	14490	15470	15470	16450	16450
	1	°/L	10100	10200	10350	11390	12210	12250	13230	13570
Macca	kg	A/E	10750	10800	10850	13760	14330	14560	14970	15350

Примечание:

Из соображений удобства транспортировки холодильные машины NS типоразмеров от 6003 до 7203 поставляются в виде отдельных блоков, включающих два компрессора с коммутационными коробками (закрепленными на передней поверхности холодильной машины) и один модуль, в который входит компрессор с его коммутационной коробкой (закрепленный сбоку, под теплообменником). При монтаже оборудования достаточно подключить электрические кабели, соединяющие отдельные блоки. Более подробная информация содержится в техническом описании и/или в инструкции ппо установке холодильных машин.

NSFC

R134a

Холодильные машины с воздушным охлаждением, агрегатированные системой «непосредственного охлаждения» с осевыми вентиляторами и винтовыми компрессорами. Холодопроизводительность от 272 до 1555 кВт. Холодопроизводительность в режиме «непосредственного охлаждения» от 280 до 1510 кВт.

Рабочая температура до +46 °C

Модификации со встроенными насосными агрегатами

Характеристики

- 32 типоразмера
- Модификации, работающие только на охлаждение
- Модификации, рассчитанные на работу с хладагентом R134a
- Модификации с частичной и полной рекуперацией тепла
- Высокоэффективные спиральные компрессоры, низкошумные, с плавной регулировкой производительности от 40 до 100% (от 25 до 100% с электронным терморегулирующим вентилем).
- Возможность оборудования насосным агрегатом (смотри «Выбор модифика-

- ции») следующих конфикураций:
- один насос или рабочий плюс резервный насосы;
- два 25 л. расширительных бака;
- заправочное устройство.
- Работоспособность при температурах наружного воздуха до +46 °C.
- Система контроля скорости вращения вентиляторов.
- Высокоэффективные воздушно-водяные теплообменники режима непосредственного охлаждения с гладкими трубками и развитым оребрением
- Трехходовой вентиль в контуре циркуля-

- ции воды для переключения в режим непосредственного охлаждения
- Модульная микропроцессорная система управления
- Индикация рабочих параметров контроллера на нескольких языках.
- Кожухотрубный теплообменник (испаритель) оптимизированный для работы с хлалагентом R134a.
- Осевые вентиляторы, обладающие предельно низким уровнем шума.
- Металлический корпус с антикоррозионным покрытием из полиэстера.

Дополнительное оборудование

- AER485P1: Интерфейс стандарта RS-485 для систем диспетчеризации с использованием протокола MODBUS.
- AVX: Виброизолирующие опоры пружинного типа. Для проверки совместимости различных моделей обратитесь к техническому руководству.
- KRS: Электрический обогреватель испарителя. Данный аксессуар может быть установлен только на заводе изготовителе.
- GP: Решетка, защищающая внешний теплообменник от механических повреждений и града. Должно быть установлено на заводе изготовителе.
- PRV3: Дистанционная проводная панель управления.
- RIF: Токовый фазовый компенсатор. Его

- параллельное соединение с обмотками мотора позволяет снизить потребляемый ток (около 10%), также позволяет повысить соѕф до 0,95. Данное оборудование может быть установлено на заводе только когда машина изготавливается.
- AERWEB30: Опция AERWEB позволяет удаленно управлять чиллером через последовательный порт с обычного ПК. Используя дополнительные модули, данная опция позволяет управлять чиллером через телефонную сеть с помощью AERMODEM, либо через сеть GSM используя AERMODEMGSM. С помощью AERWEB может управлять группой до 9 чиллеров, каждый из которых должен быть укомплектован соответствующей
- интерфейсной картой AER485P1.
- АК: «Акустический пакет» (только для модификации Е). Данная опция позволяет обеспечить еще большее шумоподавление. Данное оборудование может быть установлено только когда машина изготавливается и поэтому должно быть заказано при размещении ордера.
- MULTICHILLER: Система управления для группы чиллеров установленных параллельно (до 9 единиц), позволяющая включать/выключать каждый индивидуальный чиллер в группе и обеспечивающая постоянный расход на испарителях.

			Совме	естимо	ость до	ополні	ительн	юго о	борудо	ования	7						
Модель NSB	1251	1401	1601	1801	2101	2401	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202
AER485P1	~	V	V	/	V	V	✓ (x2)	✓ (x2)	✓ (x2)	✓ (x2)	✓ (x2)	✓ (x2)					
AK ACUSTIC KIT	✓ (E)	✓ (E)	✓ (E)	✓ (E)	✓ (E)	✓ (E)											
AVX	501	501	501	506	512	512	501	501	505	511	511	511	511	511	511	509	507
PRV3	<u> </u>	~	/	/	/	~	~	<u> </u>									
AERWEB30	<u> </u>	/	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	'	/								
RIF(*)	301	301	301	301	371	411	161x2	161x2	201x2	201	241x2	241	301x2	301x2	301x2	301x2	301x2
MULTICHILLER		~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~
KRS (*)	4	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5x2	5x2
GP 300M (*)(**)	~	~	~													(x2)	(x2)
GP 400M (*)(**)				~													
GP 500M (*)(**)					V	V											
GP 300B (*)(**)							~	~									
GP 400B (*)(**)									~								
GP 500B (*)(**)										v	V	V	v	V	V		
Модель NSB	3402	3602	3902	4202	4502	4802	5003	5203	5403	5703	6003	6303	6603	6903	7203		
AER485P1	✓ (x2)	✓ (x2)	√ (x2)	√ (x2)	√ (x2)	✓ (x2)	✓ (x3)	✓ (x3)	✓ (x3)	✓ (x3)							
AK - ACUSTIC KIT	✓ (E)	✓ (E)	✓ (E)	✓ (E)													
AVX	513	516	518	518	521	521	517	515	524	525	525	527	527	530	530		
PRV3	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~		
AERWEB30	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~		
RIFNS (*)	301x2	301x2	301 371	301 411	371 411	411x2	301x3	301x3	301x3	301x2 371	301x2 411	301 371 411	301 411x2	301 411x2	411x3		
MULTICHILLER		~	_	_	v	~	v	~	v	~	~	411 ✓	~	~	~		
KRS (*)	5x2	5x2	5x2	5x2	5x2	5x2	5x3	5x3	5x3	5x3	5x3	5x3	5x3	5x3	5x3		
GP 300M (*)(**)	- JAZ	JAZ	JAZ	JAZ	JAL	3,12	(x2)	<u> </u>	JAJ	JAJ	JAJ	JAJ	JAJ	JAJ	JAJ		
	•							<u> </u>	>		>						
GP 400M (*)(**)	~	(x2)	~	~			~	(x2)	(x3)	(x2)	(x2)	~	~				

Примечания:

(*) Данное оборудование может быть установлено только на заводе-изготовителе. Число в скобках (х2) обозначает количество. (**) Количество необходимых GP зависит от типоразмера выбранной модели (для типоразмеров от 1251 до 2802 необходим один GP; для типоразмеров от 3002 до 4802 необходимо два GP; для остальных типоразмеров необходимо три GP).

Выбор модификации

Комбинируя различные опции, можно подобрать такую модель, которая наиболее полно отвечает требованиям заказчика.

Кол:

NSB

Типоразмер:

1251, 1401, 1601, 1801, 2101, 2401, 1402, 1602, 1802, 2002, 2202 2352, 2502, 2652, 2802, 3002, 3202, 3402, 3602, 3902, 4202, 4502, 4802, 5003, 5203, 5403, 5703, 6003, 6303, 6603, 6903, 7203

Терморегулирующий вентиль:

R134a механический термостатический вентиль, минимальная температура воды на выходе до + 4 °C;

Y - R134a механический термостатический вентиль. инимальная температура воды на выходе до -6°С; X - R134a электронный термостатический вентиль,

минимальная температура воды на выходе до - 6 °C;

Модель:

 Только охлаждение; Система рекуперации тепла:

- Без системы рекуперации тепла;

Модификация:

А - Повышенной эффективности

Е - Низкошумная, повышенной эффективности

Теплообменники:

Алюминиевые

R - Медные

S - Лужёная медь

V - Окрашенные алюминиево-медные

Теплообменники:

- в соответствии со стандартом PED

Внимание:

- стандартные опции обозначаются символом °; - При необходимости поставки холодильной машины, работающей только на охлаждение, в модификации У следует обратиться в головной офис компании AERMEC для согласования технических требований.

Пример расшифровки кодового обозначения: NSB 1401 ER 8 FA

Электропитание:

о - 400B 3 ~ 50 Гц с предохранителями 2 – 230B 3 ~ 50 Гц с предохранителями *

4 - 230В 3 ~ 50 Гц с термомагнитными размыкателями*
* - не доступно для типоразмеров (2501 – 1401 – 1601 – 1801 – 2101 – 2401 – 2352 – 2502 7203)

5 – 500В 3 ~ 50 Гц с предохранителями ** ** (не доступно для типоразмеров 1601 – 1801 – 2101 – 2401 - 3002 7203)

8 – 400В 3 ~ 50 Гц с термомагнитными размыкателями 9 – 500В 3 ~ 50 Гц с термомагнитными размыкателями**

** (не доступно для типоразмеров 1601 – 1801 – 2101 – 2401 – 3002 7203)

Насосы:

F0 – без насосного агрегата

FA – с насосным агрегатом (Hacoc A)

FB – с насосным агрегатом (Hacoc A + резервный насос)

- с насосным агрегатом (Насос С)

FD - с насосным агрегатом (Hacoc C $\,^{'}$ + резервный насос) FE - с насосным агрегатом (Hacoc E)

FF - с насосным агрегатом (Насос E + резервный насос) FG - с насосным агрегатом (Насос G)

FH - с насосным агрегатом (Hacoc G + резервный насос)

- с насосным агрегатом (Насос J)

FK - с насосным агрегатом (Hacoc J + резервный насос)

Это холодильная машина NSB типоразмера 1401, низкошумного исполнения, повышенной эффективности, с медным теплообменником конденсатора, электропитанием от трехфазного напряжения 400В, 50Гц, с термомагнитными размыкателями, с насосным агрегатом «А».

Технические характеристики

Mod. NSB	Vers.	1251	1401	1601	1801	2101	2401	1402	1602	1802
	A	272	304	338	408	465	518	285	324	377
Холодопроизводительность (kW)	E	243	282	322	372	415	471	257	295	340
	A	91	104	115	144	157	177	103	119	133
Потребляемая мощность (kW)	E	93	105	117	148	161	183	105	121	136
5.5.0	A	2.98	2.92	2.94	2.84	2.97	2.92	2.77	2.73	2.82
E.E.R.	E	2.60	2.68	2.76	2.51	2.59	2.58	2.45	2.43	2.51
	A	160	180	196	238	267	299	179	205	225
Полный потребляемый ток (А)	Е	158	176	194	238	264	300	177	203	222
Режим «непосредственного охлаж,	дения»									
Холодопроизводительность (kW)	A	280	291	301	403	486	503	285	297	393
Холодопроизводительность (kW)	E	268	283	297	391	466	490	249	288	379
Потребляемая мощность (kW)		12	12	12	16	20	20	12	12	16
	A	23.33	24.27	25.10	25.21	24.29	25.17	23.73	24.76	24.56
E.E.R.	Е	22.33	23.62	24.74	24.45	23.32	24.48	20.74	23.99	23.68
Полный потребляемый ток (А)		24	24	24	32	40	40	24	24	32
D (1/1)	A	46.830	52.360	58.070	70.250	79.960	89.100	49.040	55.670	64.810
Расход воды (l/h)	Е	41.780	48.420	55.450	63.990	71.400	81.080	44.280	50.660	58.490
Компрессоры	No.	1	1	1	1	1	1	2	2	2
Диапазон регулировки	%			40 - 100	(25-100 э/	ектронны	й TPB)			
2 (IDA)	FC/A	62	63	65	65	66	66	64	65	65
Звуковое давление (dBA)	E	54	55	57	57	58	58	56	57	57
D (2/l)	FC/A	102000	102000	102000	136000	170000	170000	102000	102000	136000
Расход воздуха (m³/h)	E	70000	78000	87000	100000	112000	127000	74000	80000	96000
D (AL.)	A	6	6	6	8	10	10	6	6	8
Вентиляторы (No.)	E	6	6	6	8	10	10	6	8	8
Испарители (1)	No.	1	1	1	1	1	1	1	1	1

Mod. NSB	Vers.	2002	2202	2352	2502	2652	2802	3002	3202	3402
Valoromousper uma u usem (IAA)	A	429	480	501	522	553	584	642	675	746
Холодопроизводительность (kW)	Е	389	439	457	475	514	554	604	645	694
[](IAA)	A	153	168	177	186	200	215	219	230	259
Потребляемая мощность (kW)	E	156	167	179	191	203	214	222	233	265
ГГР	A	2.81	2.86	2.83	2.81	2.76	2.72	2.93	2.94	2.88
E.E.R.	Е	2.50	2.62	2.55	2.48	2.54	2.59	2.72	2.76	2.62
	A	261	288	305	322	344	366	376	391	434
Полный потребляемый ток (А)	Е	255	286	302	318	337	357	370	387	431
Режим «непосредственного охлаж	сдения»									
V (1347	, A	452	491	498	505	514	522	592	602	705
Холодопроизводительность (kW) <u>E</u>	420	476	483	489	502	514	580	594	688
Потребляемая мощность (kW)		20	20	20	20	20	20	24	24	28
	A	22.59	24.56	24.91	25.24	25.69	26.10	24.68	25.10	25.16
E.E.R.	E	21.00	23.79	24.14	24.46	25.12	25.70	24.18	24.74	24.57
Полный потребляемый ток (А)		40	40	40	40	40	40	48	48	56
D (1/h)	A	73720	82630	86240	89860	95190	100520	110420	116130	128320
Расход воды (I/h)	E	66.950	75.420	78.540	81.650	88.490	95.320	103.870	110.890	119.440
Компрессоры	No.	2	2	2	2	2	2	2	2	2
Диапазон регулировки	%			40 - 100 (2	25-100 VT elec	ctronic)				
2 (D.A.)	FC/A	66	66	66	66	67	67	67	68	68
Звуковое давление (dBA)	E	58	58	58	58	59	59	59	60	60
D (2/L)	FC/A	170,000	170,000	170,000	170,000	170,000	170,000	204,000	204,000	238,000
Расход воздуха (m³/h)	E	124500	120000	123000	130000	130000	140000	165000	174000	187000
Вентиляторы (No.)	A - E	10	10	10	10	10	10	12	12	14
Испарители (1)	No.	1	1	1	1	1	2	2	2	2

Mod. NSB Vers. 3602 3902 4202 4502 4802 5003 5203 5403 5703 Холодопроизводительность (kW) A 817 873 926 983 1036 1.084 1.154 1.225 1.282 Тотаl Потребляемая мощность (kW) A 288 300 321 334 354 374 403 432 444 E.E.R. A 2.84 2.91 2.89 2.95 2.92 2.90 2.87 2.84 2.88 Полный потребляемый ток (A) A 476 505 537 566 598 629 672 714 743 Полный потребляемый ток (A) A 476 502 538 564 600 625 669 713 740
Холодопроизводительность (kW) E 744 787 843 887 943 1.017 1.066 1.116 1.159 Тотаl Потребляемая мощность (kW) A 288 300 321 334 354 374 403 432 444 Е.Е.R. A 2.84 2.91 2.89 2.95 2.92 2.90 2.87 2.84 2.88 E.E.R. A 476 505 537 566 598 629 672 714 743
Тотаl Потребляемая мощность (kW) A 288 300 321 334 354 374 403 432 444 E.E.R. A 2.84 2.91 2.89 2.95 2.92 2.90 2.87 2.84 2.88 E.E.R. E 2.49 2.53 2.53 2.56 2.56 2.67 2.58 2.51 2.54 Помил потробномий том (A) A 476 505 537 566 598 629 672 714 743
Iotal Потребляемая мощность (kW) E 298 311 333 346 369 381 413 445 457 E.E.R. A 2.84 2.91 2.89 2.95 2.92 2.90 2.87 2.84 2.88 E.E.R. E 2.49 2.53 2.53 2.56 2.56 2.67 2.58 2.51 2.54 Помина потрабления и тем (A) A 476 505 537 566 598 629 672 714 743
E.E.R. A 2.84 2.91 2.89 2.95 2.90 2.87 2.84 2.88 E 2.49 2.53 2.53 2.56 2.56 2.67 2.58 2.51 2.54 2.88 E 2.49 2.53 2.53 2.56 598 629 672 714 743
E.E.R. E 2.49 2.53 2.53 2.56 2.56 2.67 2.58 2.51 2.54 Compared
E 2.49 2.33 2.35 2.36 2.36 2.07 2.38 2.31 2.34 Daywer Formed Forwer Toy (A) A 476 505 537 566 598 629 672 714 743
Полный потреоляемый ток (А) Е 476 502 538 564 600 625 669 713 740
Режим «непосредственного охлаждения»
Various 200 A 807 889 907 989 1007 1006 1108 1210 1293
Холодопроизводительность (kW) E 782 858 881 956 979 985 1079 1174 1249
Потребляемая мощность (kW) 32 36 36 40 40 40 44 48 52
A 25.21 24.70 25.19 24.73 25.17 25.14 25.18 25.21 24.86
E.E.R. E. 24.45 23.82 24.47 23.90 24.48 24.62 24.53 24.45 24.02
Полный потребляемый ток (A) 64 72 72 80 80 80 88 96 104
A 140.500 150.210 159.350 169.060 178.200 186.390 198.570 210.750 220.460
Расход воды (I/h) E 127.980 135.390 145.070 152.480 162.160 174.890 183.430 191.980 199.380
Компрессоры No. 2 2 2 2 2 3 3 3

	Vers.	3602	3902	4202	4502	4802	5003	5203	5403	5703
Диапазон регулировки	%	'		40 - 100 (25-100 элек	тронный Т	PB)			
вуковое давление (dBA)	FC/A	68	69	69	69	69	70	70	70	70
Звуковое давление (dBA)	E	60	61	61	61	61	62	62	62	62
	FC/A	272000	306000	306000	340000	340000	340000	374000	408000	442000
Расход воздуха (m³/h)	E	200000	212000	227000	239000	254000	274000	287000	300000	312000
Вентиляторы (No.)	A - E	16	18	18	20	20	20	22	24	26
Испарители (1)	No.	2	2	2	2	2	3	3	3	3

Mod. NSB	Vers.	6003	6303	6603	6903	7203
	A	1.335	1.391	1.444	1.501	1.554
Холодопроизводительность (kW)	E	1.216	1.259	1.315	1.358	1.414
4110	A	465	478	498	511	532
Потребляемая мощность (kW)	E	479	492	514	527	549
r r D	A	2.87	2.91	2.90	2.94	2.92
E.E.R.	E	2.54	2.56	2.56	2.58	2.58
- (A)	A E	775	804	836	865	897
Полный потребляемый ток (А)	E	776	802	838	864	900
Режим «непосредственного о	хлажден	«RNH				
V (1110	A	1.310	1.393	1.410	1.493	1.510
Холодопроизводительность (kW)	E	1272	1347	1371	1446	1469
Потребляемая мощность (kW)		52	56	56	60	60
	A	25.20	24.87	25.18	24.88	25.17
E.E.R.	E	24.46	24.06	24.47	24.09	24.48
Полный потребляемый ток (А)		104	112	112	120	120
D (1/1)	A	229.600	239.310	248.450	258.160	267.300
Расход воды (l/h)	E	209.070	216.470	226.160	233.560	243.250
Компрессоры	No.	3	3	3	3	3
Диапазон регулировки	%		40 - 100	(25-100 э	лектронны	й ТРВ)
	FC/A	70	70	71	71	71
Звуковое давление (dBA)	E	62	62	63	63	63
2/1	FC/A	442000	476000	476000	510000	510000
Расход воздуха (m³/h)	E	327000	339000	354000	366000	381000
Вентиляторы (No.)	A - E	26	28	28	30	30
Испарители (1)	No.	3	3	3	3	3

Электропитание = 400В, 3 фазы, 50Гц. Указанные технические характеристики относятся к следующим условиям:

Режим охлаждения:

- Температура воды на входе 12 °C Температура воды на выходе 7°C; Температура наружного воздуха 35°C; Δt = 5 °C.

Режим «непосредственного охлаждения»:

- Температура воды на входе 15°C Температура наружного воздуха 2°C Гликоль 0%

Звуковое давление измерено в свободном пространстве на расстоянии 10 м. с фактором направленности Q=2. В соответствии со стандартом ISO 3744.

Размеры (мм)

Mod. NSB			1251	1601	1801	2101	2401	1402	1401
Высота	(A)		2450	2450	2450	2450	2450	2450	2450
Ширина	(B)		2200	2200	2200	2200	2200	2200	2200
Глубина	(C)	A/E	3780	3780	3780	4770	5750	5750	3780
Macca	kg	A/E	3760	3770	3840	5000	5950	5980	4010
Mod. NSB			1602	1802	2002	2202	2352	2502	2652
Высота	(A)		2450	2450	2450	2450	2450	2450	2450
Ширина	(B)		2200	2200	2200	2200	2200	2200	2200
Глубина	(C)	A/E	3780	4770	5750	5750	5750	5750	5750
Macca	kg	A/E	4030	4730	5470	5790	6340	6330	6340
Mod. NSB			2802	3002	3202	3402	3602	3902	4202
Высота	(A)		2450	2450	2450	2450	2450	2450	2450
Ширина	(B)		2200	2200	2200	2200	2200	2200	2200
Глубина	(C)	A/E	5750	7160	7160	8150	9140	10120	10120
Macca	kg	A/E	6350	7210	7310	8410	9180	10580	11580

Mod. NSB			4502	4802	5003	5203	5403	5703	6003	6303	6603	6903	7203
Высота	(A)		2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
Ширина	(B)		2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Глубина	(C)	A/E	11100	11100	11530	12520	13510	14490	14490	15470	15470	16450	16450
Macca	kg	A/E	11104	11320	12990	13790	15220	15130	15160	16560	17560	17084	17300

Из соображений удобства транспортировки холодильные машины NSB типоразмеров от 6003 до 7203 поставляются в виде двух отдельных блоков, один из которых содержит два компрессора со стандартным электрическим шкафом (расположенным в торце машины), а второй – с одним компрессором и дополнительным электрическим шкафом,

расположенным сбоку, под теплообменником. При монтаже оборудования достаточно подключить электрические кабели, соединяющие отдельные блоки. Более подробная информация содержится в техническом описании и/или в инструкции по установке холодильных машин.

Холодильные машины с воздушным охлаждением, с ИНВЕРТОРНЫМИ винтовыми компрессорами, осевыми вентиляторами Холодопроизводительность от 262 до 1249 кВт

participate in the EUROVENT program:LCP/A/P/C, up to 600 kW the products are present on the site www.eurovent-certification.com * Not certified model

Особенности

- 14 типоразмеров
- Модификации, работающие только на охлаждение.
- Хладагент R134a.
- Новое поколение ИНВЕРТОРНЫХ винтовых компрессоров:
- Плавное регулирование производительности от 15 до 100%
- С автоматическим контролем степени сжатия
- С оптико-электронным контролем уровня масла
- АС Инвертор:
- Охлаждение хладагентом
- С контролем рабочей зоны
- Со встроенным регистратором данных

Модификация «А»

с Повышенной эффективностью

- Максимальная рабочая температура наружного воздуха до +46 °C
- Компрессор с шумоизолирующим кожухом для низкого уровня шума
- Электронный расширительный клапан
- Кожухо-трубный испаритель с отводом сухого пара, оптимизированный для работы с хладагентом R134a
- . Чрезвычайно низкий уровень шума осевых вентиляторов с опциями:
- **М** с высоким статическим давлением вентиляторов
- Ј инверторные вентиляторы

- Насосная группа (см. Конфигурацию Устройства), которая включает в себя:
- 1 насос
- 2 насоса (рабочий + резервный)
- 2 расширительных бака объемом 25 л
- Микропроцессорный контроллер
- Многоязычный дисплей
- Компактные размеры
- Металлическая панель управления с антикоррозионным полиэстеровым покрытием.

Выбор модификации

Комбинируя различные опции, можно подобрать необходимую конфигурацию холодильной машины, которая наиболее полно отвечает требованиям заказчика.

Кодовые обозначения опций:

Код:

NSI

Типоразмер:

1251, 1401, 1601, 1701, 1801, 2502, 2802, 3202, 3402, 3602, 4203, 4803, 5103, 5403

Расширение устройства:

Х - R134a Электронный расширительный клапан, минимальная температура воды на выходе до +4 °C (для более низких температур, обратитесь на завод)

Модель:

- Только охлаждение

Рекуперация тепла:

° - Без рекуперации

Модификация:

А - Повышенной эффективности

Теплообменник:

- Из алюминия
- R Из меди
- Из луженой меди
- Из алюминия с защитным эпоксидным покрытием

Вентиляторы:

- - Стандартные
- М С высоким статическим давлением
- J С инверторным управлением

Электропитание:

° - 400 В, трехфазное, 50 Гц, с предохранителями

Насосная группа:

00 - Без насосного агрегата

РА - С насосным агрегатом (насос А)

РВ - С насосным агрегатом (насос А + резервный насос)

РС - С насосным агрегатом (насос С)

PD - C насосным агрегатом (насос C + резервный насос)

РЕ - С насосным агрегатом (насос Е)

РЕ - С насосным агрегатом (насос Е + резервный насос)

PG - C насосным агрегатом (насос G)

PH - C насосным агрегатом (насос G + резервный насос)

РЈ - С насосным агрегатом (насос J)

РК - С насосным агрегатом (насос Ј + резервный насос)

Модель NSI	Мо- диф.		1251	1401	1601	1701	1801	2502	2802	3202	3402	3602	4203	4803	5103	5403
Холодопроизводительность	Α	kW	262	302	333	374	416	525	591	665	747	832	906	998	1122	1249
Полная потребл. мощность	Α	kW	88	100	112	127	140	173	199	225	254	281	299	337	380	420
Расход воды	Α	l/h	45100	51900	57200	64300	71600	90400	101700	114400	128500	143100	155800	171700	192900	21490
Падение давления	Α	kPa	38,0	49,0	27,0	39,0	36,0	52,0	64,0	36,0	49,0	51,0	49,0	27,0	39,0	36,0
EER	Α	W/W	2,98	3,02	2,96	2,95	2,97	3,03	2,97	2,96	2,94	2,96	3,03	2,97	2,95	2,98
ESEER	Α	W/W	4,69	4,68	4,64	4,63	4,67	4,78	4,69	4,64	4,63	4,67	4,76	4,64	4,63	4,67
Электропитание		V/ph/Hz							400/3	/50Hz						
Полный потр. ток	Α	Α	140	159	179	202	223	275	315	358	403	446	476	537	605	669
Максимальный ток (FLA)	Α	Α	244	309	309	388	388	483	613	617	776	776	926	926	1164	1164
Пусковой ток (LRA)	Α	Α	24	24	24	28	28	129	129	133	142	142	243	243	256	256
Регулирование производительности	Α	%	24-100	20-100	18-100	17-100	15-100	12-100	12-100	9-100	9-100	9-100	7-100	7-100	7-100	7-100
Vo=naaaan		Тип					Винт	овой с и	нвертор	ным рег	улирова	нием				
Компрессоры	Α	n°	1	1	1	1	1	2	2	2	2	2	3	3	3	3
Хладагент	Α	tipo							R1	34a						
Холодильные контуры	Α	n°	1	1	1	1	1	2	2	2	2	2	3	3	3	3
Расход воздуха	Α	m³/h	116000	110000	106000	145000	136000	180000	173000	212000	290000	272000	330000	318000	435000	408000
Вентиляторы	Α	Тип							Oce	евой						
		Тип							корпус	и труба						
Испаритель	Α	n°	1	1	1	1	1	1	1	1	1	1	3	3	3	3
Макс. темп. наружного воздуха		°C							4	6						

Данные в соответствии с UNI 14511:2011 Указанные технические характеристики относятся к следующим условиям:

Охлаждение:
- темп. воды на входе 12 °C 7 °C 35 °C 5 °C - темп. воды на выходе - темп. наружного воздуха - разность температур $\Delta t =$

Размеры (мм)

Модель NSI			1251	1401	1601	1701	1801	2502	2802	3202	3402	3602	4203	4803	5103	5403
Высота	Α	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
Ширина	В	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Длина	С	mm	3780	3780	3780	4770	4770	5750	5750	7160	9140	9140	10540	10540	13510	13510

Холодильные машины с воздушным охлаждением с двухступенчатым центробежным компрессором и осевыми вентиляторами. Холодопроизводительность от 287 до 844,8 кВт.

participates in the EUROVENT: LCP/A/P/R programme, up to 600 kW The products are listed on the site www.eurovent-certification.com * not certified models

Особенности

- 12 типоразмеров
- Модификации, работающие только на охлаждение.
- Двухступенчатые центробежные компрессоры последнего поколения, работающие без смазки, на бесподшипниковой магнитной подвеске, исключающей потери на трение.
- Модификации, рассчитанные на работу с 3. Встроенная система снижения пикового хладагентом R134a.
- Беспрецедентно высокая эффективность при неполной нагрузке: до 30% выше, чем у холодильных машин стандартной конструкции.
- Терморегулирующий вентиль с электронным управлением.
- Кожухотрубный теплообменник, оптимизированный для применения хладагента R134a.
- Осевые вентиляторы, обладающие предельно низким уровнем шума.

- Особенности конструкции компрессора:
- 1. Бесподшипниковая магнитная подвеска, исключающая потери на механическое трение, полное отсутствие вибраций и низко частотного шума.
- 2. Инверторное управление производительностью, обеспечивающее 25%-ный уровень холодопроизводительности.
- тока не более 6 А.
- Стандартная "о" и низкошумная "L" модификации:
- 1. Допустимая температура воздуха до 42°C.
- 2. Звукопоглощающее покрытие компрессорного агрегата.
- 3. Управление скоростью вентилятора
- Повышенной эффективности "А" и повышенной эффективности, с пониженным уровнем шума "Е" модификации:
- 1. Допустимая температура воздуха до 42°C.

- 2. Звукопоглощающее покрытие компрессорного агрегата.
- 3. Вентилятор с инверторным управлением
- Модульная система управления на основе микропроцессора.
- Электрообогрев испарителя.
- Жидкокристаллический интерфейс пользователя с цветным сенсорным дисплеем и дружелюбным меню, не требующим специальной подготовки для управления работой холодильной машины.
- Индикация рабочих параметров на нескольких языках.
- Компактные размеры.
- Металлический корпус с антикоррозионным покрытием из полиэстера.

Дополнительное оборудование

- AER485P1: RS-485 интерфейс для управления системой по протоколу MODBUS
- AVX: Пружинные вибропоглощающие опоры корпуса. Выбираются в соответствии с таблицей совместимости дополнительного оборудования.
- **GP:** Решетка, защищающая внешний теплообменник от повреждений.

Устанавливается на заводе изготовителе.

• PTW: Панель дистанционного управления, обеспечивает управление всеми функциями холодильной машины.

TBX	VERS.	1401	1801	2001	2302	2502	2652	2802	3202	3502	3702	3802	4102
AER485P1	All	✓ (x1)	✓ (x1)	✓ (x1)	✓ (x2)								
AERWEB300-6	All	V	V	~	~	~	~	~	V	~	~	~	· /
AERWEB300-18	All	V	V	V	~	V	V	~	V	V	V	V	V
AERWEB300-6G	All	V	V	V	~	~	~	~	V	~	~	~	· ·
AERWEB300-18G	All	V	V	V	V	V	V	V	V	V	V	V	
GP300M	L E	V											
GP400M	L E		~										
GP500M	L E			~	~	~							
GP 300M+300M	L E						~						
GP 300M+400M	L E							~	~	~			
GP 400M+400M	L E										~		
GP 400M+500M	L E											~	
GP 500M+500M	L E												V
GP 300M	° A	'											
GP 400M	° A		~								-	-	
GP 500M	° A			~		~							
GP 300M+300M	° A						'						
GP 300M+400M	° A							~	'				
GP 400M + 400M	° A									'			
GP 400M + 500M	° A										/		
GP 500M+500M	° A											✓	'
	0	570	571	571	572	573	574	575	575	576	576	577	577
AVX	L	570	571	571	572	573	574	575	575	575	576	576	577
AVA	Α	570	571	571	572	573	574	575	575	576	576	578	578
	E	570	571	571	572	573	574	575	575	575	576	576	577

Примечание:

Цифра в скобках, напр. (х2) обозначает количество.

АЕR485P1 и GP Устанавливается на заводе изготовителе.

Выбор модификации

Комбинируя различные опции, можно подобрать необходимую конфигурацию холодильной машины, которая наиболее полно отвечает требованиям заказчика.

Кодовые обозначения опций:

Код:

TBX

Типоразмер:

1401, 1801, 2001, 2302, 2502, 2652, 2802, 3202, 3502, 3702, 3802, 4102

Модель:

 $^{\circ}~$ - только охлаждение, с испарителем стандарта PED

Модификация:

- Стандартная
- L Низкошумная
- А Повышенной эффективности
- Е Повышенной эффективности, с пониженным уровнем шума

Теплообменник:

- ° Из алюминия
- R Из меди
- S Из меди с оловянным покрытием
- V Из меди с алюминиевым оребрением с покрытием из эпоксидных смол

Вентиляторы:

- ° Стандартные
- I С инверторным управлением стандарт для «А» и «Е» модификаций

Электропитание:

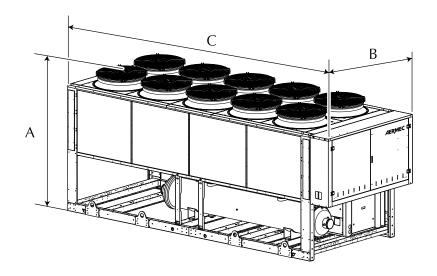
° - 400 В, трехфазное, 50 Гц, с плавкими предохранителями

Примечание:

– Электронный ТРВ в стандартной комплектации

Модель ТВХ			1401	1801	2001	2302	2502	2652	2802	3202*	3502*	3702*	3802*	4102*
тодель тых	0	kW	287	368,3	407,3	469,3	509,2	545,2	587,2	669,1	736	780,9	815,9	844,8
	L	kW	258,8	342,8	392,1	435,7	463,9	518,3	543,2	595	635,3	687,8	742,3	784,6
Холодопроизводительность	A	kW	286,8	370,7	415,5	460,4	502,2	538,1	594,1	667,8	739,5	793,3	831,2	861
	E	kW	265,2	354,8	406,4	441,2	473,6	532,5	556	614	650,4	707,4	768,4	813,1
	0	kW	91,8	117,2	129,3	149	161,4	173	184,9	212,2	233,3	247,4	258,8	268,2
	L	kW	88,9	117,9	134,7	149,6	159,3	177,5	186,2	203,8	217,7	236,3	255	269
Полная потр. мощность	Α	kW	86	110,9	124,8	138,1	150,4	161,1	177,3	199,7	220,8	237,3	248,4	258,1
	E	kW	84,8	113,6	130,2	141,2	152,2	170,3	177	196,9	207,8	226,5	246,1	260,1
	0	l/h	49536	63468	70176	80840	87720	93912	101136	115240	126764	134504	140524	145512
Расход воды	L	l/h	44646	59065	67577	75047	79911	89292	93568	102495	109444	118477	127858	135154
т асход воды	<u>A</u>	l/h	49536	63984	71724	79464	86688	92880			127624			
	E	I/h	45790	61229	70176	76141	81755	91931		105966	112282	122106	132633	140352
	•	kPa	36	17	15	15	15	15	14	15	16	17	15	16
Падение давления	<u>L</u>	kPa	30	15	19	13	15	16	15	15	17	16	16	17
	<u>A</u>	kPa	50	41	43	44	44	44	41	43	45	46	45	48
	E	kPa	44	38	49	40	46	48	46	44	49	47	48	48
	•	W/W	3,13	3,14	3,15	3,15	3,16	3,15	3,18	3,15	3,15	3,16	3,15	3,15
EER	<u>L</u>	W/W	2,91	2,91	2,91	2,91	2,91	2,92	2,92	2,92	2,92	2,91	2,91	2,92
	<u>A</u>	W/W	3,33	3,34	3,33	3,33	3,34	3,34	3,35	3,34	3,35	3,34	3,35	3,34
	E	W/W	3,13	3,12	3,12	3,13	3,11	3,13	3,14	3,12	3,13	3,12	3,12	3,13
		W/W	4,82	4,92	4,95	5,12	5,14	5,13	5,18	5,14	5,14	5,14	5,15	5,14
ESEER	<u>L</u>	W/W W/W	4,69 5,01	4,77	4,76 5,04	4,97 5,33	4,97	4,96 5,35	5,00 5,38	4,97 5,37	4,97	4,98	4,97 5,37	4,96
	A E	W/W		5,06			5,35				5,37	5,36		5,34
2	<u> </u>		4,85	4,89	4,82	5,15	5,13	5,13	5,15	5,16	5,14	5,15	5,15	5,14
Электропитание		V/ph/Hz							3/50Hz					
	•	A	147	195	216	242	260	280	299	355	389	412	431	447
Полный потр. ток	<u>L</u>	A	144	198	225	244	258	287	308	345	366	396	426	449
-	<u>A</u>	A	134	179	200	217	235	251	276	322	355	382	399	413
	<u>E</u>	A	132	176	209	221	238	265	275	320	337	366	396	417
		A	153 153	234 234	240 240	300 300	300	306 306	312 312	462 462	468 462	474 468	480 474	480 480
Макс. потр. ток (FLA)	A	A A	159	242	250	310	310	318	326	476	484	492	500	500
	E	A	159	242	250	310	310	318	326	476	476	484	492	500
	0	A	24	30	36	126	126	132	138	188	194	200	206	206
	L	A	24	30	36	126	126	132	138	188	188	194	200	206
Макс. пусковой ток (LRA)			30	38	46	136	136	144	152	202	210	218	226	226
	A E	A	30	38		136	136	144	152	202	202	210	218	226
	Е	A A	30	30	46	130			енчато		202	210	210	
Регулирование			30-	30-	30-	15-	15-	15-	15-	15-	15-	15-	15-	15-
производительности		Α	100	100	100	100	100	100	100	100	100	100	100	100
Vоципоссор		Тип									СЛЯНЫЙ			
Компрессор		n°	1	1	1	2	2	2	2	2	2	2	2	2
Хладагент		Тип						R1	34a					
Холодильный контур		n°	1	1	1	1	1	1	1	1	1	1	1	1
Расход воздуха	° A	m³/h	94200								265600			
Таслод воздула	L E	m³/h	69720	92960	116200	116200	109900	139440	162680	162680	153860	185920	209160	232400
	° L	Тип							евой					
Вентиляторы	AE	Тип							горное	управле				
20	L E	Тип	6	8	10	10	10	12	14	14	16	18	20	20
	° A	Тип	6	8	10	10	10	12	14	14	14	16	18	20
Испаритель		Тип							трубныі					
•		n°	1/170	1/250	1/250	1/250	1/250	1/250	1/250	1/250	1/250	1/250	1/250	1/250
Электрический нагреватель		n°/W	1/170	1/250	1/250	1/250	1/250	1/250	1/250	1/250	1/250	1/250	1/250	1/250
Макс. температура		°C	42	42	42	42	42	42	42	42	42	42	42	42
наружного воздуха	° A	dD(A)												
3pyropag Houseast		dB(A)	88 83	89 84	90 85	90 85	90	91	92 87	92 87	93	93	93	93
Звуковая мощность	E	dB(A)					85	86	87 85		87	88	88	88
	<u>E</u> ○ A	dB(A)	81 56	82 57	83 58	83 58	83 58	84 58	<u>85</u> 	85 59	85 60	86 60	86 60	<u>86</u>
3pv/cpoe Aapaciliae		dB(A)	56 51	52						<u>59</u>	60 		55	60
Звуковое давление	<u>L</u> E		49	50	53 51	53 51	53 51	<u>53</u> 51	54 52	52	52	55 53	53	<u>55</u>
	C	dB(A)	49	DU	31	21	21	21	52	52	52	23	23	53

^{*} Модель не сертифицирована EUROVENT


Технические характеристики согласно EN14511-2:20011 Звуковая мощность: Режим охлаждения

12 °C 7 °C 35 ° Температура воды на входе Температура воды на выходе Температура наружного воздуха

Aermec определяет значение звуковой мощности на основании измерений проведённых в соответствии с нормативом 9614-2 в связи с требованиями EUROVENT.

Звуковое давление:

Измерено в свободном пространстве, в режиме охлаждения, над отражающей поверхностью (фактор направленности Q=2), на расстоянии 10 метров от внешней поверхности машины. В соответствии с ISO 3744.

Модель ТВХ			1401	1801	2001	2302	2502	2652	2802	3202	3502	3702	3802	4102
Высота	All	mm	2.450	2.450	2.450	2.450	2.450	2.450	2.450	2.450	2.450	2.450	2.450	2.450
Ширина	All	mm	2.200	2.200	2.200	2.200	2.200	2.200	2.200	2.200	2.200	2.200	2.200	2.200
A	° A	mm	3.780	4.770	5.750	5.750	5.750	7.160	8.150	8.150	9.140	10.120	11.100	11.100
Длина	LE	mm	3.780	4.770	5.750	5.750	5.750	7.160	8.150	8.150	8.150	9.140	10.120	11.100

$\mathbf{WRL} ext{-}\mathbf{H}$

Реверсивный тепловой насос с водяным охлаждением для производства горячей воды до +60°C.

Холодопроизводительность от 6 до 40 кВт. Теплопроизводительность от 8 до 48 кВт.

R410A

Aermec participates in the

products.

The products of interest figure in

STA- STH – датчики ТЕМПЕРАТУРЫ В ПОМЕЩЕНИИ

PGD1 – упрощенная проводная выносная панель управления

- ВЫСОКАЯ ЭФФЕКТИВНОСТЬ
- ВОЗМОЖНОСТИ КОМПЛЕКТАЦИИ СЛЕДУЮЩИМИ ОПЦИЯМИ:
- СИСТЕМОЙ ПОЛНОЙ РЕКУПЕРАЦИИ:
- ПРОИЗВОДСТВО ГОРЯЧЕЙ ВОДЫ С ТЕМПЕРАТУРОЙ ДО +60°С;
- ПРИОРИТЕТ ПРОИЗВОДСТВА ГОРЯЧЕЙ ВОДЫ ДЛЯ ГВС.
- СИСТЕМА ПРИМЕНИМА ДЛЯ РАБОТЫ С ГЕОТЕРМАЛЬНЫМИ ИСТОЧНИКАМИ ТЕПЛА
- РЕВЕРСИРОВАНИЕ ПО СТОРОНЕ ХЛАДАГЕНТА

Особенности

WRL - новая серия реверсивных тепловых насосов с водяным охлаждением, сконструированная для работы с хладагентом R410a. Машины WRL внутренней установки, с герметичными спиральными компрессорами, что прекрасно отвечает потребностям рынка, ориентированного на жилые дома: компактные размеры, простота установки, низкая шумность.

Высокая эффективность

AERMEC разработал эту серию для функционирования в режиме теплового насоса с максимально высокой эффективностью.

Подключение

Электрическое и гидравлическое подключения расположены на верхней плоскости машин, что способствует простоте монтажа и обслуживания. Это также позволяет минимизировать необходимое пространство для обслуживания и размещать данные машины на меньшей площади.

Тишина

Машины серии WRL имеют выдающиеся шумовые характеристики. Тщательная шумоизоляция с использованием звукопоглощающих материалов позволяет устанавливать машины WRL даже вне специальных подготовленных технических помещений.

Приоритетное производство горячей воды.

Машина обеспечивает производство горячей воды для системы ГВС с приоритетным режимом как при работе на охлаждение, так и на обогрев. Температура производимой воды для ГВС зависит от . типа связи между тепловым насосом WRL и системой ГВС здания. Машина WRL стандартно поставляется с одним датчиком температуры для любых аккумулирующих баков системы ГВС.

Динамическая уставка

Благодаря использованию самого современного поколения электронного регулирования и использованию внешнего датчика температуры (дополнительная опция), тепловой насос может адаптировать температуру производимой горячей воды в соответствии с изменением климатических условий, повышая тем самым энергетическую эффективность системы.

Преимущества

Принятые в серии WRL технические решения всегда направлены на максимальное качество в сочетании с использованием наиболее инновационных технологий, способных обеспечить максимальную энергоэффективность, простую установку и прекрасную гибкость системы использованием альтернативных источников энергии.

Модельный ряд

Девять типоразмеров с возможностью реверсирования цикла по стороне хладагента.

Модификации

- WRL H
- WRI HA

Особенности конструкции

- Рама и основание выполнены из гальванизированной листовой стали с эпоксидным покрытием (цвет по RAL 9002).
- Большие пластинчатые теплообменники.
- Высокоэффективные компрессоры с низким энергопотреблением.
- Реле давления
- Соответствует указаниям по безопасности (СЕ), а также Стандартам в области электромагнитной совместимости.
- Безопасность установки гарантирована использованием изолированного выключателя со встроенным замком двери электрического щита управления, а также активной защитой основных компонентов.
- Управление может быть реализовано удаленно, с использованием панели с лисплеем, отображающим все параметры работы машины (возможно выбрать один из четырё языков интерфейса).
- Система электронного управления последнего поколения.
- Удаленная панель управления также обладает простой и понятной системой меню и способна отображать аварийные сигналы от машины.

Дополнительное оборудование

- AER485P1: Интерфейс стандарта RS-485 для систем диспетчеризации с использованием протокола MODBUS.
- VT: Виброизолирующие опоры, группа из четырёх виброизолирующих опор собирается под стальной рамой машины.
- STA: Комнатный датчик температуры, с питанием 230В переменного тока; установочный комплект содержит комнатный датчик температуры воздуха с дисплеем и регулирующей ручкой. Контролирует ON-OFF клапан либо насос, работающий на соответствующую зону.
- **STH:** Комнатный датчик температуры и влажности, с питанием 230В переменного тока; установочный комплект содержит комнатный датчик температуры и влажности с дисплеем и регулирующей ручкой. Контролирует ON-OFF клапан либо насос, работающий на соответствующую зону, а

- также согласует работу осушителя.
- SSM: Датчик для использования в комбинации со смешивающим клапаном на водяной системе «тёплый пол» если она применяется. Этот датчик должен быть заказан совместно с опцией VMFCRP.
- **S...1**: Накопительные баки для системы; доступны в различных типоразмерах: 200, 300, 400 или 500 литров (S200I, \$300I, \$400I или \$500I соответственно).
- **PGD1:** Упрощенная удалённая проводная панель управления. Позволяет осуществлять контроль за функционированием машины и получать уведомления об аварийных сигналах. Максимальное возможное удаление – до 500м. при использовании экранированной витой пары и «Т»-образного разветвителя для локальной сети TCONN6I000.
- KSAE: Датчик температуры наружного

- воздуха. Датчик температуры в пластиковом корпусе (ІР44).
- **VMFCRP:** Устройство зонального управления.

Тепловые насосы WRL могут управлять максимум тремя различными зонами, используя следующие методы:

- Зона №1: управляется последовательно благодаря использованию электронного регулирования последнего поколения. Рекомендовано использовать накладной датчик температуры SSM, для измерения температуры выходящей воды.
- Машина отправляет воду с параметрами. измеренными датчиком на накопительный бак ГВС.
- Управление оставшихся зон №2 и №3 возможно реализовать используя комбинации VMFCRP + SSM.

		Сов	местимост	ь дополнит	ельного обој	рудования			
WRL	025	030	040	050	070	080	100	140	160
AER485P1	/	~	~	~	V	✓	~	V	~
VT (version H)	9	9	9	9	9	9	15	15	15
VT (version HA)	9	9	9	9	9	9	15A	15A	15A
STA	✓	✓	✓	/	✓	✓	~	✓	✓
STH	/	~	~	~	V	✓	~	V	~
SSM	/	~	~	~	V	✓	/	V	~
SI (200-300-400-500)	V	~	~	~	V	~	~	V	~
PGD1	V	V	V	~	V	V	~	V	~
KSAE	V	~	V	~	V	~	~	~	~
VMFCRP	V	~	V	~	~	~	~	V	~

Выбор модификации

Комбинируя различные опции, можно подобрать такую модель, которая наиболее полно отвечает требованиям заказчика.

Кодовые обозначения опций:

КОД: WRL

ТИПОРАЗМЕР:

025 - 030 - 040 - 050 - 070 - 080 - 100 - 140 - 160

ТЕРМОРЕГУЛИРУЮЩИЙ ВЕНТИЛЬ:

Х – электронный термостатический вентиль, для охлаждения воды Δ0 -8 °C

МОДЕЛЬ:

Н - Тепловой насос

МОЛИФИКАЦИЯ:

Стандартная

А - С баком-накопителем

СИСТЕМА РЕКУПЕРАЦИИ ТЕПЛА:

Без системы рекуперации;

Т – С системой полной рекуперации. Только для модификаций с тепловым насосом. При этом рекомендована установка насоса с изменяемым расходом на геотермальной стороне контура.

МОДИФИКАЦИЯ «О/А» НАСОСНАЯ ГРУПП НА ГЕОТЕРМАЛЬНОЙ CTOPOHE KOHTYPA:

без насосов

геотермальные применения

- трехскоростной насос on-off (до модели wrl 080) односкоростной трехфазный стандартный насос (для типоразмеров 100-140-160)
- односкоростной трехфазный увеличенный насос (для типоразмеров 100-140-160)
- насос с регулированием методом отсечения фаз (для типоразмеров до 080)
- насос с инверторным регулированием (для типоразмеров 025-030-040-050-070-080)
- v двухходовой пропорциональный клапан

НАСОСНАЯ ГРУППА НА СТОРОНЕ ПОТРЕБИТЕЛЯ:

 без насосов (стандартная модификация)
 трехскоростной насос ON-OFF (для типоразмеров до 080) Односкоростной трехфазный СТАНДАРТНЫЙ насос (для типоразмеров 100-140-160)

– односкоростной трехфазный УВЕЛИЧЕННЫЙ насос (для типоразмеров 100-140-160)

Модификация «А» - без насосов

трехскоростной насос ON-OFF (для типоразмеров до 080) Односкоростной трехфазный СТАНДАРТНЫЙ насос (для типоразмеров 100-140-160)

J – трехскоростной УВЕЛИЧЕННЫЙ ON-OFF насос (для типоразмеров 025-030-040)

N — односкоростной трехфазный УВЕЛИЧЕННЫЙ насос (для типоразмеров 050-070-080-100-140-160)

НАСОСНАЯ ГРУППА НА СТОРОНЕ СИСТЕМЫ РЕКУПЕРАЦИИ ΤΕΠΛΑ:

без насоса

Q – насос

СИСТЕМА ПЛАВНОГО ПУСКА:

без системы плавного пуска

S - с системой плавного пуска

ЭЛЕКТРОПИТАНИЕ:

° - 400В 3ф. ~ 50Гц М -230В 1ф. ~ 50Hz (для типоразмеров 025-030-040)

Технические характеристики

WRL Model			025H	030H	040H	050H	070H	080H	100H	140H	160H
Холодопроизводительность	230V-1	kW	6,3	7,9	10,3	-	-		-	-	-
	400V-3		6,3	8,1	10,4	13,7	17,7	20,2	27,4	35,3	40,3
Тотребляемая мощность	230V-1	kW	1,67	1,90	2,42	-	-	-	-	-	-
•	400V-3		1,57	1,81	2,29	3,03	4,22	4,95	6,08	8,45	9,91
Тотребляемый ток	230V-1	A	8,5	10,8	13,5	-	-	-	-	-	-
·	400V-3		4,2	3,8	5,8	7,2	9,0	10,2	13,3	16,7	19,1
.E.R.	230V-1		3,77	4,16	4,25	-	-	_	-	-	-
	400V-3		4,01	4,49	4,54	4,54	4,19	4,08	4,52	4,18	4,07
.S.E.E.R.	230V-1		4.36	4.85	4.95	-	-			-	-
	400V-3		4.66	5.24	5.22	5.20	4.69	4.56	6.07	5.56	5.27
асход воды через испаритель	230V-1	<i>l</i> h	1.090	1.360	1.780	-	-		-	-	-
	400V-3		1.090	1.400	1.800	2.370	3.055	3.490	4.740	6.100	6.970
Тадение давления	230V-1	Иh	13	15	20	-	-		-	-	-
а испарителе	400V-3		13	16	20	19	22	26	22	29	33
асход воды через конденсатор	230V-1	l/h	1.370	1.690	2.190	-	-	-	-	-	-
	400V-3		1.360	1.700	2.180	2.890	3.770	4.325	5.770	7.525	8.635
Тадение давления	230V-1	kPa	22	22	30	-	-	-	-	-	-
на конденсаторе	400V-3		22	23	29	29	36	41	37	48	56
еплопроизводительность	230V-1	kW	7,9	10,0	12,6	-	-		-	-	-
	400V-3		7,9	9,5	12,4	16,4	20,9	24,1	32,9	41,9	48,2
Тотребляемая мощность	230V-1	kW	1,97	2,48	3,15	-	-	-	-	-	-
	400V-3		1,97	2,31	2,94	3,91	5,05	5,90	7,86	10,12	11,91
Тотребляемый ток	230V-1	A	10,5	13,1	16,6	-	-		-	-	-
io i peoritionibiri i on	400V-3		4,9	4,9	6,7	8,5	10,7	12,2	16,1	20,7	23,9
C.O.P.	230V-1		4,01	4,02	4,01	-	-	-	-	-	-
2.0.1 .	400V-3		4,01	4,12	4,22	4,20	4,14	4,09	4,19	4,14	4,05
асход воды через	230V-1	l/h	1.355	1.710	2.165	-	-	-	-	-	_
онденсатор	400V-3	1/11	1.355	1.630	2.125	2.810	3.580	4.120	5.630	7.160	8.220
Гадение давления	230V-1	kPa	20	22	29	-	-	-	-	-	-
тадение давления а конденсаторе	400V-3	Kra	20	20	28	28	32	37	35	43	51
<u> </u>		1/1.	1.370	1.690	2.190		-			-	-
асход воды через испаритель	230V-1	l/h	1.360	1.700	2.180	2.890	3.770	4.325	5.770	7.525	8.635
	400V-3			23	30			7.343		1.343	
Тадение давления	230V-1	kPa	21			- 20	- 24	- 40	- 22	- 42	
а испарителе	400V-3		21	23	30	28	34	40	33	43	51

WRL Model		025HA	030HA	040HA	050HA	070HA	080HA	100HA	140HA	160HA
Холодопроизводительность	230V-1 kW	6,3	7,9	10,3	_	-	_	_	_	_
•	400V-3	6,3	8,1	10,4	13,8	17,8	20,3	27,8	35,9	41,03
Потребляемая мощность	230V-1 kW	1,86	2,06	2,57	_	- '			- '	
•	400V-3	1,76	1,97	2,44	3,22	4,39	5,12	5,93	8,10	9,46
Потребляемый ток	230V-1 A	9,1	11,4	14,2	_	_	_	_	-	-
	400V-3	4,9	4,4	6,5	9,2	11,2	12,4	14,8	19,2	21,7
E.E.R.	230V-1	3,38	3,84	4,01	-	-	-	-	-	-
	400V-3	3,57	4,12	4,27	4,29	4,05	3,97	4,70	4,43	4,34
Расход воды через испаритель	230V-1 l/h	1.090	1.360	1.780	_	-	-	-	-	-
	400V-3	1.090	1.400	1.800	2.370	3.055	3.490	4.740	6.100	6.970
Падение давления	230V-1 l/h	14	16	22	-	-	-	-	-	-
на испарителе	400V-3	14	17	22	23	28	34	36	52	63
Расход воды через конденсатор	230V-1 Vh	1.370	1.690	2.190	-	-	-	-	-	-
	400V-3	1.360	1.700	2.180	2.890	3.770	4.325	5.770	7.525	8.635
Падение давления	230V-1 kPa	22	22	30	-	-	-	-	-	-
на конденсаторе	400V-3	22	23	29	29	36	41	37	48	56
Теплопроизводительность	230V-1 kW	7,90	9,96	12,60	-	-	-	-	-	-
<u> </u>	400V-3	7,90	9,50	12,38	16,35	20,79	23,98	32,71	41,52	47,71
Потребляемая мощность	230V-1 kW	2,14	2,63	3,28	-	-	-	-	-	-
	400V-3	2,15	2,46	3,07	4,07	5,19	6,04	7,65	9,62	11,30
Потребляемый ток	230V-1 A	12,0	14,6	18,1	-	-	-	-	-	-
· ·	400V-3	6,4	6,5	8,2	11,2	13,5	15,0	17,7	22,8	25,8
C.O.P.	230V-1	3,69	3,79	3,84	-	-	-	-	-	-
	400V-3	3,67	3,86	4,03	4,02	4,01	3,97	4,28	4,32	4,22
Расход воды через	230V-1 l/h	1.355	1.710	2.165	-	-	-	-	-	-
конденсатор	400V-3	1.355	1.630	2.125	2.810	3.580	4.120	5.630	7.160	8.220
Падение давления	230V-1 kPa	21	24	32	-	-	-	-	-	-
на конденсаторе	400V-3	21	22	31	33	40	48	55	75	93
Расход воды через испаритель	230V-1 l/h	1.370	1.690	2.190	-	-	_	-	-	_
	400V-3	1.360	1.700	2.180	2.890	3.770	4.325	5.770	7.525	8.635
Падение давления	230V-1 kPa	21	23	30	-	-	-	-	-	-
на испарителе	400V-3	21	23	30	28	34	40	33	43	51

Производительность заявлена в Внимание: соответствии со Стандартом EN Для получе 14511.

Для получения технических данных по модификациям «НА» с нако-

мощности стандартных насосов (со стороны потребителя и геотермальных насосов).

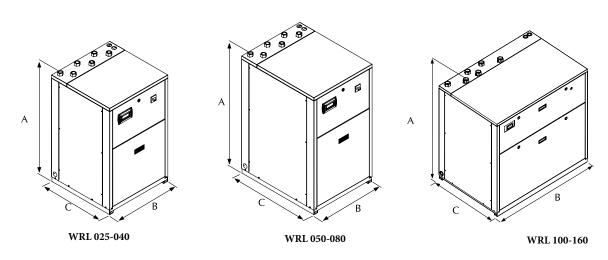
Режим охлаждения: Испаритель

Температура воды на входе Температура воды на выходе

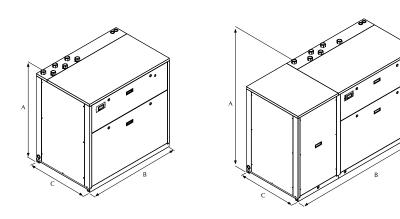
Конденсатор Температура воды на входе Температура воды на выходе $30\ ^{\circ}\mathrm{C}$

Режим нагрева: Испаритель

12 °C Температура воды на входе 7 °C Температура воды на выходе


Конденсатор Температура воды на входе Температура воды на выходе

40 °C 45 °C


WRLH- °/A Model		_ 025	030	040	050	070	080	100	140	160
Компрессор						Спиральн	ый			
Кол-во контуров / Кол-во компрессоров		1/1	1 / 1	1 / 1	1/1	1/1	1/1	1/2	1/2	1/2
Регулирование производит.	%	0 - 100	0 - 100	0 - 100	0 - 100	0 - 100	0 - 100	0 - 50 - 100	0 - 50 - 100	0 - 50 - 100
<u>Испаритель</u>						Пластинч	атый			
Регулирование расхода	%	<u>F / 1"/14</u>	F / 1"/14	F / 1"/14	F / 1"/14	F / 1"/14	F / 1"/14	F / 1"/14	F / 1"/14	F / 1"/14
Количество	n°	1	1	1	1	1	1	1	1	1
Конденсатор		_				Пластинч	атый			
Регулирование расхода	%	<u>F / 1"/14</u>	F / 1"/14	F / 1"/14	F / 1"/14	F / 1"/14	F / 1"/14	F / 1"/14	F / 1"/14	F / 1"/14
Количество	n°	_ 1	1	1	1	1	_1	1	1	1
Накопительный бак			Только в мо	дификации	і с накопите	ельным бакс	ом / с насос	ом и накопи	тельным бан	КОМ
Ёмкость накопительного бака	l	100	100	100	100	100	100	150	150	150
Расширительный бак		_								
WRLH с насосом	n°/l	1/2	1/2	1/2	1/2	1/2	1/2	1/8	1/8	1/8
WRLH с насосом и баком-		1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
аккумулятором										
Звуковая мощность	dB(A)	55,5	57,0	57,5	59,0	60,0	60,5	62,0	63,0	63,5
Звуковое давление**	dB(A)	47,0	48,5	49,0	50,5	51,5	52,0	53,5	54,5	55,0

[**]– Давление измерено в полуреверберационной камере объемом 85 м3 со временем реверберации Tr = 0.5 с.

Размеры (мм)

WRL		025H	030H	040H	050H	070H	080H	100H	140H	160H
Высота (А)	mm	976	976	976	1.126	1.126	1.126	1.126	1.126	1.126
Ширина (В)	mm	607	607	607	607	607	607	1.157	1.157	1.157
Глубина (С)	mm	628	628	628	798	798	798	798	798	798
Macca	kg	120	123	126	164	173	179	275	282	287

WRL 025-080

WRL 100-160

WRL		025HA	030HA	040HA	050HA	070HA	080HA	100HA	140HA	160HA
Высота (А)	mm	1.126	1.126	1.126	1.126	1.126	1.126	1.126	1.126	1.126
Ширина (В)	mm	1.157	1.157	1.157	1.157	1.157	1.157	1.757	1.757	1.757
Глубина (С)	mm	798	798	798	798	798	798	798	798	798
Macca *	Kg	136	138	140	176	182	186	291	294	297

^{*}Масса с двумя теплообменниками и баком-накопителем, без насоса

WRL R410A

Реверсивный чиллер с водяным охлаждением конденсатора для производства горячей воды с температурой до +55°C. Холодопроизводительность от 50 до 168 кВт. Теплопроизводительность от 53 до 187 кВт.

EUROVENT CERTIFIED PERFORMANCE

Aermec participates in the EUROVENT Certification Program.

urovent-certification.com

The products of interest appear in the EUROVENT Guide of Certified products.

PGD1 – упрощенная проводная выносная панель управления

- ВЫСОКАЯ ЭФФЕКТИВНОСТЬ
- ВОЗМОЖНОСТИ КОМПЛЕКТАЦИИ СЛЕДУЮЩИМИ ОПЦИЯМИ:
- ЧАСТИЧНАЯ РЕКУПЕРАЦИЯ;
- ПРОИЗВОДСТВО ГОРЯЧЕЙ ВОДЫ С ТЕМПЕРАТУРОЙ ДО +55°C;
- СИСТЕМА ПРИМЕНИМА ДЛЯ РАБОТЫ С ГЕОТЕРМАЛЬНЫМИ ИСТОЧНИКАМИ ТЕПЛА

Особенности

WRL – серия чиллеров с водяным охлаждением конденсатора, сконструированная для работы с хладагентом R410a. WRL – чиллеры внутренней установки, с герметичным спиральным компрессором, который прекрасно удовлетворяет всем требованиям рынка: компактные размеры, простота установки, низкая шумность.

Высокая эффективность

AERMEC разработал эту серию для функционирования в режиме теплового насоса с максимально высокой эффективностью и низким энергопотреблением.

Подключение

Электрическое и гидравлическое подключения расположены на верхней плоскости машин, что способствует простоте монтажа и обслуживания. Это также позволяет минимизировать необходимое пространство для обслуживания и размещать данные машины на менышей плошали.

Тишина

Машины серии WRL имеют выдающиеся шумовые характеристики. Тщательная шумоизоляция с использованием звукопоглощающих материалов наделяет машины WRL низким показателем шумовой эмиссии.

Динамическая уставка

Благодаря использованию самого современного поколения электронного регулирования и использованию внешнего датчика температуры (дополнительная опция), тепловой насос может адаптировать температуру производимой горячей воды в соответствии с изменением климатических условий, повышая тем самым энергетическую эффективность системы.

Преимущества

Принятые в серии WRL технические решения всегда направлены на максимальное качество в сочетании с использованием наиболее инновационных технологий, способных обеспечить максимальную энергоэффективность, простую установку и прекрасную гибкость системы с использованием альтернативных источников энергии.

Модельный ряд

Доступно восемь типоразмеров:

• с возможностью реверсирования цикла только по «водяной» стороне.

Модификации

WRL о = холодильная машина, с возможностью реверса по «водяной» стороне для работы в режиме охлаждения/нагрева.

Особенности конструкции

- Рама и основание выполнены из гальванизированной листовой стали с эпоксидным покрытием (цвет по RAL 9002).
- Большие пластинчатые теплообменники.
- Высокоэффективные компрессоры с низким энергопотреблением.
- Реле протока в стандартной комплектации.
- Соответствуе т указаниям по безопасности (СЕ), а также Стандартам в области электромагнитной совместимости.
 - Безопасность установки гарантирована использованием изолированного выключателя со встроенным замком двери электрического щита управления, а также активной защитой основных компонентов.
- Управление может быть реализовано удаленно, с использованием панели с дисплеем, отображающим все параметры работы машины (возможно выбрать один из четырё языков интерфейса).
- Система электронного управления последнего поколения.
- Удаленная панель управления также обладает простой и понятной системой меню и способна отображать аварийные сигналы от машины.

- AER485P1: Интерфейс стандарта RS-485 для систем диспетчеризации с использованием протокола MODBUS.
- VT: Виброизолирующие опоры, группа из четырёх виброизолирующих опор собирается под стальной рамой машины.
- •STA: Комнатный датчик температуры, с питанием 230В переменного тока; установочный комплект содержит комнатный датчик температуры воздуха с дисплеем и регулирующей ручкой. Контролирует ON-OFF клапан либо насос, работающий на соответствующую зону.
- STH: Комнатный датчик температуры и влажности, с питанием 230В переменного тока; установочный комплект содержит комнатный датчик температуры и влажности с дисплеем и регулирующей ручкой. Контролирует ON-OFF клапан либо насос, работающий на соответствующую зону, а

- также согласует работу осушителя.
- SSM: Датчик для использования в комбинации со смешивающим клапаном на водяной системе «тёплый пол» если она применяется. Этот датчик должен быть заказан совместно с опцией VMFCRP.
- S...I: Накопительные баки для системы; доступны в различных типоразмерах: 200, 300, 400 или 500 литров (S200I, S300I, S400I или S500I соответственно).
- PGD1: Упрощенная удалённая проводная панель управления. Позволяет осуществлять контроль за функционированием машины и получать уведомления об аварийных сигналах. Максимальное возможное удаление до 500м. при использовании экранированной витой пары и «Т»-образного разветвителя для локальной сети TCONN6J000.
- KSAE: Датчик температуры наружного

- воздуха. Датчик температуры в пластиковом корпусе (IP44).
- VMFCRP: Устройство зонального управления.

Тепловые насосы WRL могут управлять максимум тремя различными зонами, используя следующие методы:

- Зона №1: управляется последовательно благодаря использованию электронного регулирования последнего поколения. Рекомендовано использовать накладной датчик температуры SSM, для измерения температуры выходящей воды.
- Машина отправляет воду с параметрами, измеренными датчиком на накопительный бак ГВС.
- Управление оставшихся зон №2 и №3 возможно реализовать используя комбинации VMFCRP + SSM.

			Совмест	имость дог	олнительно	го оборудо	рвания		
WRL	180	200	300	400	500	550	600	650	
AER485P1	V	~	~	~	V	~	~	V	
VT	9	9	9	9	15	15	15	15	
STA	V	V	~	~	V	~	~	V	
STH	V	~	~	~	V	~	~	V	
SSM	/	/	~	~	V	~	~	V	
SI (200-300-400-500)	~	~	~	~	~	~	~	V	
PGD1	V	V	~	V	V	V	~	V	
KSAE	V	~	~	~	V	~	~	V	
VMFCRP	V	V	~	V	V	~	~	V	

Выбор модификации

Комбинируя различные опции, можно подобрать такую модель, которая наиболее полно отвечает требованиям заказчика.

Кодовые обозначения опций:

КОД: WRL

WKL

ТИПОРАЗМЕР: 180 - 200 - 300 - 400 - 500 - 550 - 600 - 650

ТЕРМОРЕГУЛИРУЮЩИЙ ВЕНТИЛЬ:

- механический терморегулирующий вентиль, минимальная температура воды на выходе до + 4 °C;
- Y механический терморегулирующий вентиль, минимальная температура воды на выходе до - 8 °C;
- X электронный терморегулирующий вентиль, минимальная температура воды на выходе до 8 °C;

МОДЕЛЬ:

- Холодильная машина с реверсом на гидравлическом контуре

МОДИФИКАЦИЯ:

° - Стандартная версия

СИСТЕМА РЕКУПЕРАЦИИ ТЕПЛА

° - Без системы рекуперации

D – Пароохладитель

НАСОСНАЯ ГРУППА(НГ) НА СТОРОНЕ КОНДЕНСАТОРА

^о - Без насоса

В – Низконапорный насос

U – Высоконапорный насос

F – Низконапорный инверторный насос

I – Высоконапорный инверторный насос

НАСОСНАЯ ГРУППА (НГ) НА СТОРОНЕ ИСПАРИТЕЛЯ

° - Без насоса

Р - Низконапорный насос

N - Высоконапорный насос

ДАННОЕ ПОЛЕ НЕ ИСПОЛЬЗУЕТСЯ

СИСТЕМА ПЛАВНОГО ПУСКА

- Без системы плавного пуска
- S С системой плавного пуска

ЭЛЕКТРОПИТАНИЕ

° - 400V-3N -50 Hz

5 - 500V-3-50Hz (для типоразмеров WRL400-550-600-650)

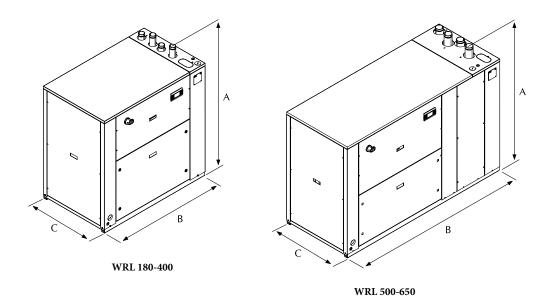
Технические характеристики

WRL Model		180	200	300	400	500	550	600	650
Холодопроизводительность	Kw	49.6	64.0	74.1	85.4	99.5	128.8	149.1	167.6
Потребляемая мощность	Kw	10.6	14.1	16.3	17.7	20.1	26.4	30.4	35.0
Потребляемый ток	Α	20.4	26.3	28.5	33.4	37.0	53.0	61.8	71.2
E.E.R.	_	4.66	4.55	4.55	4.82	4.96	4.88	4.91	4.78
Расход воды через испаритель	l/h	8520	11010	12750	14680	17120	22150	25650	2883
Падение давления на испарителе	kPa	27	45	45	65	31	48	54	65
Расход воды через конденсатор	l/h	10170	13190	15270	17430	20230	26230	30360	34250
Падение давления на конденсаторе	kPa	29	49	60	85	31	50	56	69
Теплопроизводительность	Kw	52.9	71.6	78.8	92.6	105.2	145.2	166.5	187.2
Потребляемая мощность	Kw	12.6	17.2	18.9	21.2	23.3	32.3	37.0	42.2
Потребляемый ток	A	24.3	31.4	34.0	38.2	42.8	60.2	69.5	79.3
C.O.P.	-	4.18	4.16	4.16	4.38	4.51	4.49	4.51	4.44
Расход воды через конденсатор	l/h	9090	12310	13550	15930	18090	24980	28640	32200
Падение давления на конденсаторе	kPa	22	37	45	64	27	47	54	67
Расход воды через испаритель	l/h	11890	16080	17690	21100	24140	33300	38190	42780
Падение давления на испарителе	kPa	50	82	81	118	60	104	117	144
Компрессор					СПИРАЛ	ЬНЫЙ			
Кол-во контуров/Кол-во компрессоров		1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
Регулирование производительности	%	50/100	50/100	50/100	50/100	50/100	50/100	50/100	50/100
Испаритель					ПЛАСТИ	НЧАТЫЙ			
Присоединительный диаметр		2"	2"	2"	2"	2"	2"	2"	2"1/2
Количество	n°	1	1	1	1	1	1	1	1
Конденсатор					ПЛАСТИ	НЧАТЫЙ			
Присоединительный диаметр		2"	2"	2"	2"	2"	2"	2"	2"½
Количество	n°	1	1	1	1	1	1	1	1
Пароохладитель (опционально)					ПЛАСТИ	НЧАТЫЙ			
Присоединительный диаметр		1"	1"	1"	1"	1"	1"	1"	1"½
Количество	n°	1	1	1	1	1	1	1	1
Расширительный бак (в мод. с насосами)									
Количество баков на контур/объем одного бака		1/8	1/8	1/8	1/8	1/12	1/12	1/12	1/12

Производительность заявлена в соответствии со Стандартом EN 14511.

Режим охлаждения:

Испаритель


гіспаритель
Температура воды на входе 12 °C
Температура воды на выходе 7°C
Конденсатор
Температура воды на входе 30 °C
Температура воды на выходе 35 °C

Режим нагрева:

Испаритель

Температура воды на входе 10 °C Температура воды на выходе 7 °C Конденсатор

Температура воды на входе 40 °C Температура воды на выходе 45 °C

WRL Model		180	200	300	400	500	550	600	650
Высота (А)	mm	1380	1380	1380	1380	1380	1380	1380	1380
Ширина (В)	mm	1320	1320	1320	1320	2009	2009	2009	2009
Глубина (С)	mm	845	845	845	845	845	845	845	845
Macca	kg	375	375	381	388	518	594	670	715

WRL-E

Компрессорно-испарительный агрегат Производительность по холоду от 6,6 до 43.7 кВт

Aermec participates in the EUROVENT Certification Program.

The products of interest appear in the EUROVENT Guide of Certified products.

ДИСПЛЕЙ MODU_CONTROL

КЅАЕ Датчик температуры наружного воздуха АКСЕССУАР

РR3 Упрощенная панель дистанционного управления АКСЕССУАР

Особенности

Диапазон

Доступно 9 типоразмеров.

Модели

- WRL ° (только охлаждение)
- WRL E (испаритель), суда с заправкой только.

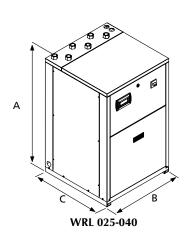
• ВЫСОКАЯ ЭФФЕКТИВНОСТЬ

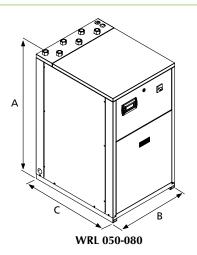
Модификации

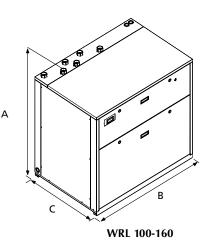
- WRL-° (стандартная без накопительного бака)
- WRL-A (с накопительным баком)

Особенности конструкции

- Рама и основание выполнены из гальванизированной листовой стали с эпоксидным покрытием (цвет по RAL 9002).
- Большие пластинчатые теплообменники.
- Высокоэффективные компрессоры с низким энергопотреблением.
- Дифференциальное реле давления (на стороне испарителя)
- Соответствует указаниям по безопасности (СЕ), а также Стандартам в области электромагнитной совместимости.


Безопасность установки гарантирована использованием изолированного выключателя со встроенным замком двери электрического щита управления, а также активной защитой основных компонентов.

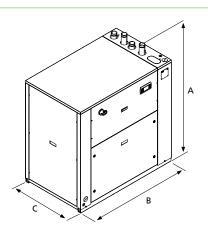

- Система электронного управления последнего поколения.
- Панель управления (Modu control)
- «PR3» Упрощенная панель дистанционного управления (АКСЕССУАР)
- Совместим с системой управления (VMF), кроме производства горячей воды.


Технические характеристики модификации «С»

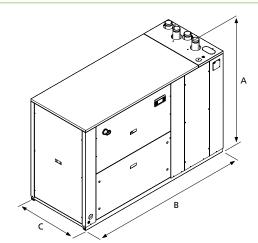
Модель WRL-E			025E	030E	040E	050E	070E	080E	100E	140E	160E
Va. a. a	230V-1	kW ·	6,2	7,8	10,4	-	-	-	-	-	-
Холодопроизводительность	400V-3	KVV '	6,3	7,8	10,4	13,4	17,4	19,7	26,8	34,7	39,4
Потребляемая мощность	_230V-1	kW ·	1 <i>,7</i>	2,1	2,9	-	-	-	-	-	-
готреоляемая мощность	400V-3	KVV	1,7	2,0	2,8	3,6	4,5	5,3	7,2	9,1	10,6
Потребляемый ток	_230V-1_	۸ .	8,3	10,5	12,8	-	-	-	-	-	-
готреоляемый ток	400V-3	Α .	3,4	3,2	5,4	7,2	8,3	10,2	14,3	16,6	20,5
E.E.R.	230V-1		3,56	3,65	3,63	-	-	-	-	-	-
E.E.K.	400V-3		3,70	3,87	3,75	3,73	3,83	3,71	3,73	3,83	3,71
Расход воды через	230V-1	l/h ·	1070	1340	1790	-	-	-	-	-	-
испаритель	400V-3	1/11	1080	1340	1790	2300	2980	3390	4600	5970	6770
Падение давления	230V-1	kPa ·	13	15	20	-	-	-	-	-	-
на испарителе	400V-3	кга .	13	15	20	18	21	24	21	28	31

Охлаждение:

WRL-E		025	030	040	050	070	080	100	140	160
Высота (А)	mm	976	976	976	1126	1126	1126	1126	1126	1126
Ширина (В)	mm	607	607	607	607	607	607	1157	1157	1157
Глубина (С)	mm	628	628	628	798	798	798	798	798	798
Macca WRL-E	КГ	110	115	125	150	150	150	245	250	250


Технические характеристики "WRL-E"

Model WRL-E		180 E	200 E	300 E	400 E	500 E	550 E	600 E	650 E
Холодопроизводительность	kW	46.0	60.1	69.6	80.1	90.6	121.3	140.2	158.7
Потребляемая мощность	kW	12.4	16.0	18.5	19.8	23.1	29.6	34.1	38.5
Потребляемый ток	A	22.9	28.5	32.4	35.6	41.8	55.8	64.8	73.9
EER	-	3.7	3.8	3.8	4.1	3.9	4.1	4.1	4.1
Расход воды через испаритель	l/h	7900	10340	11980	13770	15580	20860	24110	27300
Падение давления на испарителе	kPa	23	39	39	56	25	42	47	57
Газовая линия	mm	28	28	28	28	35	35	35	35
Жидкостная линия	mm	22	22	22	22	28	28	28	28


Охлаждение:

Температура конденсации 45 $\,^{\circ}$ C; Температура воды на выходе из испарителя 7 $\,^{\circ}$ C ; $\Delta t = 5 \,^{\circ}$ C.

Размеры (мм)

WRL 500-650

WRL-E		180	200	300	400	500	550	600	650
Высота (А)	mm	1380	1380	1380	1380	1380	1380	1380	1380
Ширина (В)	mm	1320	1320	1320	1320	2060	2060	2060	2060
Глубина (С)	mm	845	845	845	845	845	845	845	845
Macca WRL-E	КГ	346	346	351	358	460	536	615	660

NXW

Холодильные машины - тепловые насосы с водяным охлаждением и спиральными компрессорами. Холодопроизводительность от 106 до 385 кВт. Теплопроизводительность от 119 до 419 кВт.

R410A

Aermec adheres to the EUROVENT Certification Programme.

The products concerned appear in the

The products concerned appear in the EUROVENT Certified Products Guide.

- ВЫСОКОЭФФЕКТИВНЫЕ МОДИФИКАЦИИ
- ТЕПЛОВЫЕ НАСОСЫ С РЕВЕРСИРОВАНИЕМ ЦИКЛА
- МОДИФИКАЦИИ С ОДНИМ ИЛИ ДВУМЯ ЦИРКУЛЯЦИОННЫМИ НАСОСАМИ НА СТОРОНЕ ИСПАРИТЕЛЯ И/ИЛИ НА СТОРОНЕ КОНДЕНСАТОРА
- ТЕМПЕРАТУРА НАГРЕВА ВОДЫ ДО +55°C

Характеристики

Серия NXW – это холодильные машины с водяным охлаждением – тепловые насосы для установки внутри помещений, использующие хладагент R410a. Оснащены герметичными спиральными компрессорами, легко монтируются, имеют высокие показатели эффективности, низкий шум и полностью соответствуют современным требованиям.

Максимальная энергоэффективность.

Продолжительные разработки компании AERMEC в области энергоэффективности применены в серии NXW для достижения высоких показателей, как при полной, так и при частичной нагрузке. В результате эти машины демонстрируют показатели E.E.R. ≥ 5,05 и C.O.P. ≥ 4,45.

Доступные модификации:

NXWo: тепловой насос с гидравлическим реверсированием цикла;

NXWH: тепловой насос с реверсированием на стороне хладагента.

Все модификации доступны в низкошумном исполнении. Насосные агрегаты на стороне испарителя и/или конденсатора.

Машины могут быть укомплектованы насосными агрегатами, как на стороне испарителя, так и на стороне конденсатора; каждый гидромодуль оборудован водяным фильтром, насосом высокого или низкого давления, реле протока и 25-литровым расширительным баком, тем самым оптимизируя занимаемую площадь помещения, время и затраты на монтаж. Возможно также установить второй насос с теми же характеристиками, что и первый, в качестве резервного.

Электронное управление

Современная электронная панель управления позволяет контролировать несколько функций:

- Управлять системой из двух машин, установленных параллельно, как Ведущий и Ведомый;
- Обеспечивать ротацию насосов;
- Управлять инверторным насосом на стороне конденсатора для контроля давления конденсации;
- Настраиваемый таймер;
- Автоматическая компенсация Уставки;

Конструктивные особенности:

- Корпус и рама выполнены из гальванизированного стального листа с эпоксидным порошковым покрытием (цвет по RAL 9002);
- Высокоэффективные пластинчатые теплообменники;
- Компрессоры с высокой производительностью и низким энергопотреблением;
- Полное соответствие директивам ЕС по правилам безопасности и электромагнитной совместимости. Электрическую безопасность машин гарантирует блокировка на двери шкафа управления и элементы активной защиты основных компонентов.
- Возможно удаленное управление. Все команды отображаются на мониторе с возможностью выбора одного из четырёх языков отображения.
- Авангардная система настроек.
- Удаленная панель управления с дружественным пользовательским интерфейсом и возможностью аварийной сигнализации.

Дополнительное оборудование

- AER485P1: Интерфейс стандарта RS-485 для систем диспетчеризации с использованием протокола MODBUS.
- PGD1: В дополнение к основному терминалу, установленному в щите управления, NXW может быть укомплектована выносным терминалом PGD1. Данное устройство обладает всеми функциями (клавиатура, дисплей) основного, встроенного в машину.
- RIF: Токовый фазовый компенсатор. Его параллельное соединение с мотором позволяет снизить потребляемый ток (примерно на 10%). Данное оборудование может быть установлено только когда машина изготавливается и поэтому должно быть заказано при размещении ордера.
- AVX: Виброизолирующие опоры пружинного типа.
- DRE: Система плавного пуска, позволяет снижать пусковые токи (примерно на 30% для одноконтурных машин, на 26% для двухконтурных машин и на 22% для трёхконтурных). Доступна только для питания 400В ~ 3ф. Должно быть установлено на заводе изготовителе.

NXW	0500	0550	0600	0650	0700	0750 ER485P1	0800	0900	1000	1250	1400
ВСЕ	· ·	• •	• •	• •	· •	• •	• •	• • •	• •	• •	• •
ТЕРМИНАЛ УДАЛЁННОГО УПРАВЛЕНИЯ РGD1											
BCE	V										• •
						AVX					
۰	319	319	301	301	301	303	310	314	316	316	315
° + 1 PUMP	320	320	320	320	320	312	651	665	653	654	654
° + 2 PUMPS	320	320	309	309	309	312	651	665	653	654	654
° + 3 PUMPS	320	320	309	309	309	312	651	665	653	654	654
° + 4 PUMPS	309	309	310	310	310	312	651	665	653	654	654
H	319	319	301	301	302	310	310	314	316	315	317
H + 1 PUMP	320	320	320	309	309	651	651	665	654	654	654
H + 2 PUMPS	320	320	303	309	311	651	651	665	654	654	654
H+ 3 PUMPS	309	309	303	311	312	651	651	665	654	654	654
H + 4 PUMPS	309	309	312	312	312	651	651	665	654	654	654
L	309	309	310	303	303	310	314	314	315	315	317
L+ 1 PUMP	321	321	311	311	651	651	652	653	654	659	659
L+ 2 PUMPS	311	311	31	311	651	651	652	653	654	659	659
L + 3 PUMPS	311	311	312	312	651	651	652	653	654	659	659
L + 4 PUMPS	312	312	312	310	651	651	652	653	654	659	659
HL	309	309	310	303	304	314	314	315	317	317	318
HL+ 1 PUMP	311	311	311	311	651	652	665	653	659	659	659
HL+ 2 PUMPS	311	311	312	313	651	652	665	653	659	659	659
HL + 3 PUMPS	312	312	312	313	651	652	665	653	659	659	659
HL + 4 PUMPS	312	312	312	313	651	652	665	653	659	659	659
E	319	319	301	301	301	303	310	314	316	316	315
E + 1 PUMP	320	320	320	320	320	312	651	665	653	654	654
E + 2 PUMPS	320	320	309	309	309	312	651	665	653	654	654
E + 3 PUMPS	320	320	309	309	309	312	651	665	653	654	654
E + 4 PUMPS	309	309	310	310	310	312	651	665	653	654	654
LE	309	309	310	303	303	310	314	314	315	315	317
L E + 1 PUMP	321	321	311	311	651	651	652	653	654	659	659
L E + 2 PUMPS	311	311	31	311	651	651	652	653	654	659	659
L E + 3 PUMPS	311	311	312	312	651	651	652	653	654	659	659
L E + 4 PUMPS	312	312	312	310	651	651	652	653	654	659	659
T	303	303	310	310	310	314	652	315	322	322	322
LT	312	312	651	651	652	652	652	323	324	324	324
						RIF					
Все	RIF98	RIF98	RIF95	RIF95	RIF95	RIF95	RIF95	RIF96	RIF97	RIF97	RIF97
						DRE					
ВСЕ	DRE501	DRE551	DRE601	DRE651	DRE701	DRE751	DRE801	DRE901	DRE1001	DRE1251	DRE1401

Выбор модификации

Комбинируя различные опции, можно подобрать такую модель, которая наиболее полно отвечает требованиям заказчика.

Кодовые обозначения опций:

Код: NXW

Типоразмер:

0500, 0550, 0600, 0650, 0700, 0750, 0800, 0900, 1000, 1250, 1400

Терморегулирующий вентиль:

- Стандартный терморегулирующий вентиль, минимальная температура воды на выходе до + 4°C;
- Низкотемпературный термостатический вентиль, минимальная температура воды на выходе до -8 °C;
- Электронный термостатический вентиль, минимальная температура воды на выходе до 8 °C;

Модель:

- тепловой насос с гидравлическим реверсированием цикла
- Н тепловой насос с реверсированием цикла на стороне халадагента.

Модификация:

- СтандартнаяL Низкошумная

Испаритель:

° – Стандартный

Система рекуперации тепла

- Без системы рекуперации тепла
- D C пароохладителями
- Т С полной рекуперацией

Электропитание:

- $^{\circ}$ 400В 3 \sim 50 Гц с термомагнитными размыкателями 4 230В 3 \sim 50 Гц с термомагнитными размыкателями* 5 500В 3 \sim 50 Гц с термомагнитными размыкателями** Насосный агрегат на стороне испарителя

 о - без насосного агрегата
- М насос с низким напором
- N насос с низким напором и резервный насос
- О насос с высоким напором
- Р насос с высоким напором и резервный насос
- Насосный агрегат на стороне конденсатора ° без насосного агрегата
- насос с низким напором
- V насос с низким напором и резервный насос
- W насос с высоким напором
- Z насос с высоким напором и резервный насос
- J низконапорный насос с инвертором
- К высоконапорный насос с инвертором

Предупреждение: стандартные опции отмечены символом «°»; Данные модификации невозможно комбинировать с насосными агрега-

тами на стороне испарителя или конденсатора: YD, YT, HE, HT, ET.

* - доступно только для типоразмеров 0500-0700; ** - доступно только для типоразмеров 0600-0650 и с 0800 до 1400; *** - «испаритель» здесь теплообменник, работающий как испаритель в режиме охлаждения; «конденсатор» здесь теплообменник, работающий как конденсатор в режиме теплового насоса.

Технические характеристики

Модель NXW	vers	Ед.изм.	0500	0550	0600	0650	0700
Холодопроизость	° – L	kW	112	121	149	167	189
Полная потребляемая мощность		kW	22,2	23,9	29,5	32,9	37,3
Расход воды через испаритель	°-L	l/h	19264	20812	25628	28758	32458
Падение давления на испарителе	°-L	kPa	30	35	32	40	43
Расход воды через конденсатор	°-L	l/h	22892	24718	30449	34141	38548
Падение давления на конденсаторе	°-L	kPa	25	29	29	37	37
Теплопроизвость	° – L	kW	119	129	161	181	205
Полная потребляемая мощность		kW	26,5	28,6	35,7	40,0	45,5
Расход воды через конденсатор	°-L	l/h	20468	22188	27692	31215	35195
Падение давления на конденсаторе	°-L	kPa	20	23	24	31	31
Расход воды через испаритель	°-L	l/h	16138	17515	21859	24681	27763
Падение давления на испарителе	°-L	kPa	21	25	23	29	31
ПОКАЗАТЕЛИ ЭНЕРГОЭФФЕКТИВНО	ОСТИ						
EER	° - L	W/W	5,05	5,06	5,05	5,08	5,06
EEEC	° – L		A	A	Á	A	Á
ESEER	° – L	W/W	6,01	6,02	6,01	6,04	6,02
COP	° - L	W/W	4,49	4,51	4,51	4,54	4,50
ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ				400V 3 50Hz		,	,
Потребляемый ток (в режим	e。ı	A	48,3	50,6	58,4	63	86
охлаждения)					30,4		
Потребляемый ток (в режиме нагрева		A	54	57	66	72	94
Максимальный ток	° - L	Α	75	80	96	107	122
Пусковой ток	° - L	A	240	245	227	238	289
ХЛАДАГЕНТ							
R410A(C1- C2) [1]	° - L	kg	6-6	6-6	7,8-7,8	7,8-7,8	9-9
КОМПРЕССОР				Спиральный			
Кол-во компрес./контуров		3/2	3/2	4/2	4/2	4/2	
ИСПАРИТЕЛЬ (ПЛАСТИНЧАТЫЙ)							
Количество	° - L	n°		1			
Присоед. диаметр гидравл. контура – Victaulic		Ø	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2
КОНДЕНСАТОР				Пластинчатый			
Количество	° - I	n°		1			
Присоед. диаметр гидравл. контура – Victaulic		Ø	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2
НАСОСЫ НА СТОРОНЕ ИСПАРИТЕЛ	Я						
Свободный напор (для низконапорны агрегатов)	X M, N	kPa	91	82	70	89	69
Свободный напор (для высоконапорны агрегатов)	^X O, P	kPa	181	173	167	213	191
НАСОСЫ НА СТОРОНЕ КОНЛЕНСАТ	OPA						
Свободный напор (для низконапорны	^X U, V, J	kPa	86	76	92	67	111
агрегатов) Свободный напор (для высоконапорны		kPa	188	171	155	188	161
arperaros)	, 2, 10			.,.			
ШУМОВЫЕ ХАРАКТЕРИСТИКИ	0	ID(A)	70	70	70	00	0.2
Звуковая мощность	0	dB(A)	78	79	79	80	82
Звуковое давление		dB(A)	46	47	47	48	50
Звуковая мощность	<u>L</u>	dB(A)	72	73	73	74	76
Звуковое давление	L	dB(A)	40	41	41	42	44

[1] эти данные могут изменяться.

Представленные данные справедливы при следующих условиях:

Режим охлаждения: Температура производимой воды Температура воды на входе конденсатора DT 7 °C 30 °C 5 °C

Режим нагрева: Температура производимой воды Температура воды на входе испарителя DT Электропитание = 400B 3 ~ 50 Гц. 45 °C 10 °C 5 °C

*- указанные данные относятся к режиму работы на охлаждение

Aermec определяет значение звуковой мощности на основании измерений проведённых в соответствии с нормативом 9614-2 в связи с требованиями EUROVENT.

Модель NXW	vers	Ед,изм.	0750	0800	0900	1000	1250	1400
Холодопроизость	°-L	kW	223	258	292	326	355	385
Полная потребляемая мощность		kW	43,6	50,4	57,8	64,5	70,3	76,1
Расход воды через испаритель	°-L	l/h	38392	44325	50188	56050	61097	66142
Падение давления на испарителе	°-L	kPa	47	49	55	35	36	36
Расход воды через конденсатор	°-L	l/h	45511	52565	59629	66594	72590	78585
Падение давления на конденсаторе	°-L	kPa	45	60	38	29	34	36
Теплопроизвость	°-L	kW	242	279	318	356	388	419
Полная потребляемая мощность		kW	53,5	61,8	70,4	79,2	86,2	93,2
Расход воды через конденсатор	°-L	l/h	41595	47995	54638	61281	66656	72030
Падение давления на конденсаторе	°-L	kPa	38	50	32	25	29	30
Расход воды через испаритель	°-L	l/h	32850	37904	43140	48340	52574	56807
Падение давления на испарителе	°-L	kPa	34	36	41	26	27	27
ПОКАЗАТЕЛИ ЭНЕРГОЭФФЕКТИВН	ОСТИ				•			
EER	° - L	W/W	5,12	5,11	5,05	5,05	5,05	5,05
EEEC	° - L		A	A	A	A	A	A
ESEER	° - L	W/W	6,05	6,03	6,02	6,06	6,05	6,06
COP	° - L	W/W	4,52	4,52	4,51	4,50	4,50	4,50
ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ	1				400V 3 50Hz			
Потребляемый ток (в режим охлаждения)	-	A	94	102	120	138	140	143
Потребляемый ток (в режиме нагрева)		A	105	115	135	154	160	165
Максимальный ток	° - L	Α	146	169	193	217	231	248
Пусковой ток	° - L	A	319	341	398	422	490	504
ХЛАДАГЕНТ								
R410A(C1- C2) [1]	° - L	kg	10-10	12-12	16-16	24-24	25 -25	27-27
КОМПРЕССОР					<u>ПИРАЛЬНЫЙ</u>			
Количество			4/2	4/2	4/2	4/2	4/2	4/2
ИСПАРИТЕЛЬ (ПЛАСТИНЧАТЫЙ)								
Количество	° - L	n°			1			
Присоед. диаметр гидравл. контура – Victaulic		Ø	2"1/2	2"1/2	2"1/2	3"	3"	3"
КОНДЕНСАТОР				Γ	ІЛАСТИНЧАТЬ	ІЙ		
Количество	° - L	n°			1			
Присоед. диаметр гидравл. контура – Victaulic		Ø	2"1/2	2"1/2	2"1/2	3"	3"	3"
НАСОСЫ НА СТОРОНЕ ИСПАРИТЕ	ΛЯ							
Свободный напор (для низконапорных агрегатов)	M, N	kPa	102	86	68	74	102	88
Свободный напор (для высоконапорных агрегатов)	^X O, P	kPa	152	180	166	177	167	158
НАСОСЫ НА СТОРОНЕ КОНДЕНСА	TOPA							
Свободный напор (для низконапорных	^X U, V, J	kPa	88	99	104	93	69	128
Свободный напор (для высоконапорных агрегатов)	^X W, Z, K	kPa	182	158	168	215	190	166
ШУМОВЫЕ ХАРАКТЕРИСТИКИ								
	0	dB(A)	86	88	88	88	90	90
Звуковая мощность				F.6	= (F.C	58	58
Звуковая мощность Звуковое давление	0	dB(A)	54	56	56	56	30	50
	° L	dB(A) dB(A)	80	82	82	82	84	84

[1] эти данные могут изменяться.

Представленные данные справедливы при следующих условиях:

Режим охлаждения: Температура производимой воды Температура воды на входе конденсатора DT 7 °C 30 °C 5 °C

Режим нагрева: Температура производимой воды Температура воды на входе испарителя DT Электропитание = 400B 3 ~ 50 Гц. 45 °C 10 °C 5 °C

*- указанные данные относятся к режиму работы на охлаждение

Aermec определяет значение звуковой мощности на основании измерений проведённых в соответствии с нормативом 9614-2 в связи с требованиями EUROVENT.

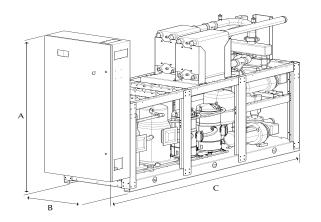
Модель NXW	vers	Ед,изм.	0500	0550	0600	065	50	0700
Холодопроизость	H - HL	kW	106	114	141	160		181
Полная потребляемая мощность		kW	23,2	25,0	30,3	34,		38,9
Расход воды через испаритель	H -HL	<u>l/h</u>	18232	19608	24252		196	31095
Падение давления на испарителе Расход воды через конденсатор	H - HL H - HL	kPa l/h	17 22023	20 23693	19 29203	24)89	24 37444
Падение давления на конденсаторе	H - HL	kPa	25	29	28	35	009	35
Теплопроизвость	H - HL	kW	121	131	160	181	1	203
Полная потребляемая мощность		kW	27,2	29,4	35,9	40,		45,5
Расход воды через конденсатор	H - HL	l/h	20812	22532	27520	310	088	34982
Падение давления на конденсаторе	H - HL	kPa	20	23	24	31	,	31
Расход воды через испаритель	H - HL	<u>l/h</u>	16138	17515	21859	246	581	27763
Падение давления на испарителе ПОКАЗАТЕЛИ ЭНЕРГОЭФФЕКТИВНОО	H - HL	kPa	22	26	24	31		30
EER	<u>.тиг</u> Н - HL	W/W	4,57	4,56	4,65	4,6	7	4,65
EEEC	11-11L		4,3/	4,36 C	4,63	4,0 B	/	B
ESEER		W/W	5,73	5.71	5,76	5,8	5	5,76
COP	H - HL	W/W	4,45	4,46	4,46	4,4		4,47
ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ				400V 3 50		,		
Потребляемый ток (в режиме	H - HL	Α	49	52	60	65		87
охлаждения)								
Потребляемый ток (в режиме нагрева)	H - HL	A	54	57	66	72	7	94
Максимальный ток Пусковой ток		A A	75 240	80 245	96 227	107 238		122 289
ΧΛΑΔΑΓΕΗΤ		/1	<u> </u>	<u> </u>			<u> </u>	203
R410A(C1- C2) [1]								
КОМПРЕССОР	H - HL	kg	6,5-6,5	6,5-6,5	8,5-8,5	8.5	-8,5	10,0-10,0
Кол-во компрес./контуров				Спиральн	І ЫЙ			
ИСПАРИТЕЛЬ (ПЛАСТИНЧАТЫЙ)	n°/n°		3/2	3/2	4/2	4/2		4/2
Количество	<u>H - HL</u>	n°			1			
Присоед. диаметр гидравл. контура –		Ø	2"1/2	2"1/2	2"1/2	2"1	/2	2"1/2
Victaulic KOHAEHCATOP				Пластинча				
Количество	H - HL	n°		Пластинча	<u>ныи</u> 1			
Присоед. диаметр гидравл. контура –			0114/0	0.11.4.60	- 1		10	0.11.4.0
Victaulic		Ø	2"1/2	2"1/2	2"1/2	2"1	/2	2"1/2
								
Maron NIVIA/		Γ	0750	0000	0000	1000	1250	1400
MOAGAD NXW	vers	Ед.изм.	0750	0800	0900	1000	1250	1400
Холодопроизость	vers H - HL	kW	212	243	278	314	342	370
Холодопроизость Полная потребляемая мощность	H - HL H - HL	kW kW	212 45,5	243 52,0	278 60,4	314 68,8	342 74,7	370 80,6
Холодопроизость Полная потребляемая мощность Расход воды через испаритель	H - HL H - HL H - HL	kW kW I/h kPa I/h	212 45,5 36431 29 43858	243 52,0 41768 38 50272	278 60,4 47876 24 57750	314 68,8 53985 19 65229	342 74,7 58831 22 71038	370 80,6 63676 24 76847
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсаторе	H - HL H - HL H - HL H - HL	kW kW I/h kPa I/h kPa	212 45,5 36431 29 43858 42	243 52,0 41768 38 50272	278 60,4 47876 24 57750 36	314 68,8 53985 19 65229 28	342 74,7 58831 22 71038 32	370 80,6 63676 24 76847 34
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсаторе Теплопроизвость	H - HL H - HL H - HL	kW kW I/h kPa I/h kPa kW	212 45,5 36431 29 43858 42 240	243 52,0 41768 38 50272 55 276	278 60,4 47876 24 57750 36 314	314 68,8 53985 19 65229 28 353	74,7 58831 22 71038 32 386	370 80,6 63676 24 76847 34 419
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсаторе Теплопроизвость Полная потребляемая мощность	H - HL H - HL H - HL H - HL H - HL	kW kW I/h kPa I/h kPa kW	212 45,5 36431 29 43858 42 240 53,8	243 52,0 41768 38 50272 55 276 62,1	278 60,4 47876 24 57750 36 314 70,6	314 68,8 53985 19 65229 28 353 79,2	342 74,7 58831 22 71038 32 386 86,7	370 80,6 63676 24 76847 34 419 94,1
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсаторе Теплопроизвость Полная потребляемая мощность Расход воды через конденсатор	H - HL H - HL H - HL H - HL H - HL	kW kW l/h kPa l/h kPa kW kW l/h	212 45,5 36431 29 43858 42 240 53,8 41249	243 52,0 41768 38 50272 55 276 62,1 47515	278 60,4 47876 24 57750 36 314 70,6 54090	314 68,8 53985 19 65229 28 353 79,2 60665	342 74,7 58831 22 71038 32 386 86,7 66348	370 80,6 63676 24 76847 34 419 94,1 72030
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсаторе Теплопроизвость Полная потребляемая мощность Расход воды через конденсатор Падение давления на конденсатор	H-HL H-HL H-HL H-HL H-HL H-HL	kW kW I/h kPa I/h kPa kW kW I/h	212 45,5 36431 29 43858 42 240 53,8 41249 38	243 52,0 41768 38 50272 55 276 62,1 47515	278 60,4 47876 24 57750 36 314 70,6 54090 32	314 68,8 53985 19 65229 28 353 79,2 60665 25	342 74,7 58831 22 71038 32 386 86,7 66348 29	370 80,6 63676 24 76847 34 419 94,1 72030 30
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсаторе Теплопроизвость Полная потребляемая мощность Расход воды через конденсатор	H - HL H - HL H - HL H - HL H - HL H - HL	kW kW l/h kPa l/h kPa kW kW l/h	212 45,5 36431 29 43858 42 240 53,8 41249	243 52,0 41768 38 50272 55 276 62,1 47515	278 60,4 47876 24 57750 36 314 70,6 54090	314 68,8 53985 19 65229 28 353 79,2 60665	342 74,7 58831 22 71038 32 386 86,7 66348	370 80,6 63676 24 76847 34 419 94,1 72030
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсаторе Теплопроизвость Полная потребляемая мощность Расход воды через конденсатор Падение давления на конденсаторе Расход воды через испаритель	H - HL	kW kW I/h kPa I/h kPa kW I/h kPa kW I/h kPa I/	212 45,5 36431 29 43858 42 240 53,8 41249 38 32850 37	243 52,0 41768 38 50272 55 276 62,1 47515 50 37904 49	278 60,4 47876 24 57750 36 314 70,6 54090 32 43140 31	314 68,8 53985 19 65229 28 353 79,2 60665 25 48340 24	342 74,7 58831 22 71038 32 386 86,7 66348 29 52574 28	370 80,6 63676 24 76847 34 419 94,1 72030 30 56807 30
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсатор Теплопроизвость Полная потребляемая мощность Расход воды через конденсатор Падение давления на конденсатор Падение давления на конденсатор Падение давления на конденсаторе Падение давления на испаритель Падение давления на испарителе Показатели энергоэффективнос EER	H - HL H - HL	kW kW I/h kPa I/h kPa kW kW I/h kPa	212 45,5 36431 29 43858 42 240 53,8 41249 38 32850 37	243 52,0 41768 38 50272 55 276 62,1 47515 50 37904 49	278 60,4 47876 24 57750 36 314 70,6 54090 32 43140 31	314 68,8 53985 19 65229 28 353 79,2 60665 25 48340 24	342 74,7 58831 22 71038 32 386 86,7 66348 29 52574 28	370 80,6 63676 24 76847 34 419 94,1 72030 30 56807 30
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсатор Теплопроизвость Полная потребляемая мощность Расход воды через конденсатор Падение давления на конденсатор Падение давления на конденсатор Падение давления на конденсаторе Расход воды через испаритель Падение давления на испарителе Показатели энергоэффективнос ЕЕК ЕЕЕС	H - HL	kW kW I/h kPa I/h kPa kW I/h kPa I/h kPa I/h kPa	212 45,5 36431 29 43858 42 240 53,8 41249 38 32850 37	243 52,0 41768 38 50272 55 276 62,1 47515 50 37904 49	278 60,4 47876 24 57750 36 314 70,6 54090 32 43140 31	314 68,8 53985 19 65229 28 353 79,2 60665 25 48340 24	342 74,7 58831 22 71038 32 386 86,7 66348 29 52574 28	370 80,6 63676 24 76847 34 419 94,1 72030 30 56807 30
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсатор Теплопроизвость Полная потребляемая мощность Расход воды через конденсатор Падение давления на конденсатор Падение давления на конденсатор Падение давления на испаритель Падение давления на испарителе Показатели энергоэффективнос ЕЕК ЕЕЕС ЕSEER	H - HL H - HL	kW kW I/h kPa I/h kPa kW kW I/h kPa I/h kPa W/W	212 45,5 36431 29 43858 42 240 53,8 41249 38 32850 37 4,66 B 5,79	243 52,0 41768 38 50272 55 276 62,1 47515 50 37904 49	278 60,4 47876 24 57750 36 314 70,6 54090 32 43140 31	314 68,8 53985 19 65229 28 353 79,2 60665 25 48340 24 4,56 C 5,85	342 74,7 58831 22 71038 32 386 86,7 66348 29 52574 28 4,58 C	370 80,6 63676 24 76847 34 419 94,1 72030 30 56807 30 4,59 C
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсаторе Теплопроизвость Полная потребляемая мощность Расход воды через конденсатор Падение давления на конденсатор Падение давления на конденсаторе Расход воды через испаритель Падение давления на испарителе ПОКАЗАТЕЛИ ЭНЕРГОЭФФЕКТИВНОС EER EEEC ESEER COP	H - HL	kW kW I/h kPa I/h kPa kW I/h kPa I/h kPa I/h kPa	212 45,5 36431 29 43858 42 240 53,8 41249 38 32850 37	243 52,0 41768 38 50272 55 276 62,1 47515 50 37904 49 4,67 B 5,64 4,45	278 60,4 47876 24 57750 36 314 70,6 54090 32 43140 31 4,61 C 5,72 4,45	314 68,8 53985 19 65229 28 353 79,2 60665 25 48340 24	342 74,7 58831 22 71038 32 386 86,7 66348 29 52574 28	370 80,6 63676 24 76847 34 419 94,1 72030 30 56807 30
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсаторе Теплопроизвость Полная потребляемая мощность Расход воды через конденсатор Падение давления на конденсаторе Расход воды через испаритель Падение давления на испаритель Падение давления на испарителе Показатели энергоэффективнос ЕЕК ЕЕЕС ЕSEER СОР ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ	H - HL H - HL	kW kW I/h kPa	212 45,5 36431 29 43858 42 240 53,8 41249 38 32850 37 4,66 B 5,79 4,46	243 52,0 41768 38 50272 55 276 62,1 47515 50 37904 49 4,67 B 5,64 4,45 400V 3	278 60,4 47876 24 57750 36 314 70,6 54090 32 43140 31 C C 5,72 4,45 3 50Hz	314 68,8 53985 19 65229 28 353 79,2 60665 25 48340 24 4,56 C 5,85 4,45	342 74,7 58831 22 71038 32 386 86,7 66348 29 52574 28 4,58 C	370 80,6 63676 24 76847 34 419 94,1 72030 30 56807 30 4,59 C 5,80 4,45
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсаторе Теплопроизвость Полная потребляемая мощность Расход воды через конденсатор Падение давления на конденсаторе Расход воды через конденсаторе Расход воды через испаритель Падение давления на испарителе Показатели энергоэффективнос ЕЕК ЕЕЕС ЕSEER СОР ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ Потребляемый ток (в режиме	H - HL H - HL	kW kW I/h kPa I/h kPa kW kW I/h kPa I/h kPa W/W	212 45,5 36431 29 43858 42 240 53,8 41249 38 32850 37 4,66 B 5,79	243 52,0 41768 38 50272 55 276 62,1 47515 50 37904 49 4,67 B 5,64 4,45	278 60,4 47876 24 57750 36 314 70,6 54090 32 43140 31 4,61 C 5,72 4,45	314 68,8 53985 19 65229 28 353 79,2 60665 25 48340 24 4,56 C 5,85	342 74,7 58831 22 71038 32 386 86,7 66348 29 52574 28 4,58 C	370 80,6 63676 24 76847 34 419 94,1 72030 30 56807 30 4,59 C
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсатор Теплопроизвость Полная потребляемая мощность Расход воды через конденсатор Падение давления на конденсатор Падение давления на конденсатор Расход воды через испаритель Падение давления на испаритель Падение давления на испарителе Показатели энергоэффективнос ЕЕК ЕЕЕС ЕSEER СОР ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ Потребляемый ток (в режиме охлаждения) Потребляемый ток (в режиме нагрева)	H - HL H - HL	kW kW I/h kPa	212 45,5 36431 29 43858 42 240 53,8 41249 38 32850 37 4,66 B 5,79 4,46	243 52,0 41768 38 50272 55 276 62,1 47515 50 37904 49 4,67 B 5,64 4,45 400V 3	278 60,4 47876 24 57750 36 314 70,6 54090 32 43140 31 C C 5,72 4,45 3 50Hz	314 68,8 53985 19 65229 28 353 79,2 60665 25 48340 24 4,56 C 5,85 4,45	342 74,7 58831 22 71038 32 386 86,7 66348 29 52574 28 4,58 C	370 80,6 63676 24 76847 34 419 94,1 72030 30 56807 30 4,59 C 5,80 4,45
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсатор Теплопроизвость Полная потребляемая мощность Расход воды через конденсатор Падение давления на конденсатор Падение давления на конденсатор Расход воды через испаритель Падение давления на испаритель Падение давления на испарителе Показатели энергоэффективнос ЕЕК ЕЕЕС ЕSEER СОР ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ Потребляемый ток (в режиме охлаждения) Потребляемый ток (в режиме нагрева) Максимальный ток	H - HL	kW kW I/h kPa	212 45,5 36431 29 43858 42 240 53,8 41249 38 32850 37 4,66 B 5,79 4,46	243 52,0 41768 38 50272 55 276 62,1 47515 50 37904 49 4,67 B 5,64 4,45 400V 3 104	278 60,4 47876 24 57750 36 314 70,6 54090 32 43140 31 4,61 C 5,72 4,45 3 50Hz 122	314 68,8 53985 19 65229 28 353 79,2 60665 25 48340 24 4,56 C 5,85 4,45	342 74,7 58831 22 71038 32 386 86,7 66348 29 52574 28 4,58 C 5,77 4,45	370 80,6 63676 24 76847 34 419 94,1 72030 30 56807 30 4,59 C 5,80 4,45
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсатор Теплопроизвость Полная потребляемая мощность Расход воды через конденсатор Падение давления на конденсатор Падение давления на конденсатор Расход воды через испаритель Падение давления на испаритель Падение давления на испарителе Показатели энергоэффективнос ЕЕК ЕЕЕС ЕSEER СОР ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ Потребляемый ток (в режиме охлаждения) Потребляемый ток (в режиме нагрева) Максимальный ток Пусковой ток	H - HL	kW kW I/h kPa I/h kPa l/h kPa I/h kPa	212 45,5 36431 29 43858 42 240 53,8 41249 38 32850 37 4,66 B 5,79 4,46	243 52,0 41768 38 50272 55 276 62,1 47515 50 37904 49 4,67 B 5,64 4,45 400V 3	278 60,4 47876 24 57750 36 314 70,6 54090 32 43140 31 4,61 C 5,72 4,45 3 50Hz 122	314 68,8 53985 19 65229 28 353 79,2 60665 25 48340 24 4,56 C 5,85 4,45	342 74,7 58831 22 71038 32 386 86,7 66348 29 52574 28 4,58 C 5,77 4,45	370 80,6 63676 24 76847 34 419 94,1 72030 30 56807 30 4,59 C 5,80 4,45
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсаторе Теплопроизвость Полная потребляемая мощность Расход воды через конденсатор Падение давления на конденсатор Падение давления на конденсаторе Расход воды через испаритель Падение давления на испарителе Показатели энергоэффективнос ЕЕК ЕЕЕС ЕSEER СОР ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ Потребляемый ток (в режиме охлаждения) Потребляемый ток (в режиме нагрева) Максимальный ток Пусковой ток ХЛАДАГЕНТ	H-HL H-HL H-HL H-HL H-HL H-HL H-HL H-HL	kW kW l/h kPa l/h kPa kW kW l/h kPa l/	212 45,5 36431 29 43858 42 240 53,8 41249 38 32850 37 4,66 B 5,79 4,46 95 105 146 319	243 52,0 41768 38 50272 55 276 62,1 47515 50 37904 49 4,67 B 5,64 4,45 400V 3 104 115 169 341	278 60,4 47876 24 57750 36 314 70,6 54090 32 43140 31 4,61 C 5,72 4,45 3 50Hz 122 135 193 398	314 68,8 53985 19 65229 28 353 79,2 60665 25 48340 24 4,56 C 5,85 4,45	342 74,7 58831 22 71038 32 386 86,7 66348 29 52574 28 4,58 C 5,77 4,45 144 160 231 490	370 80,6 63676 24 76847 34 419 94,1 72030 30 56807 30 4,59 C 5,80 4,45
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсаторе Теплопроизвость Полная потребляемая мощность Расход воды через конденсатор Падение давления на конденсаторе Падение давления на конденсаторе Расход воды через испаритель Падение давления на испарителе Показатели энергоэффективнос ЕЕК СОР ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ Потребляемый ток (в режиме охлаждения) Потребляемый ток (в режиме нагрева) Максимальный ток Пусковой ток ХЛАДАГЕНТ R410A(C1- C2) [1]	H - HL	kW kW I/h kPa I/h kPa kW I/h kPa I/h k	212 45,5 36431 29 43858 42 240 53,8 41249 38 32850 37 4,66 B 5,79 4,46	243 52,0 41768 38 50272 55 276 62,1 47515 50 37904 49 4,67 B 5,64 4,45 400V 3 104 115 169 341	278 60,4 47876 24 57750 36 314 70,6 54090 32 43140 31 4,61 C 5,72 4,45 3 50Hz 122 135 193 398	314 68,8 53985 19 65229 28 353 79,2 60665 25 48340 24 4,56 C 5,85 4,45	342 74,7 58831 22 71038 32 386 86,7 66348 29 52574 28 4,58 C 5,77 4,45	370 80,6 63676 24 76847 34 419 94,1 72030 30 56807 30 4,59 C 5,80 4,45
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсаторе Теплопроизвость Полная потребляемая мощность Расход воды через конденсатор Падение давления на конденсаторе Расход воды через конденсаторе Расход воды через испаритель Падение давления на испарителе Показатели энергоэффективнос ЕЕК ЕЕЕС ЕSEER СОР ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ Потребляемый ток (в режиме охлаждения) Потребляемый ток (в режиме нагрева) Максимальный ток Пусковой ток ХАДДЕНТ R410A(C1- C2) [1] КОМПРЕССОР	H-HL H-HL H-HL H-HL H-HL H-HL H-HL H-HL	kW kW I/h kPa I/h	212 45,5 36431 29 43858 42 240 53,8 41249 38 32850 37 4,66 B 5,79 4,46 95 105 146 319	243 52,0 41768 38 50272 55 276 62,1 47515 50 37904 49 4,67 B 5,64 4,45 400V 3 104 115 169 341	278 60,4 47876 24 57750 36 314 70,6 54090 32 43140 31 4,61 С 5,72 4,45 3 50Hz 122 135 193 398	314 68,8 53985 19 65229 28 353 79,2 60665 25 48340 24 4,56 C 5,85 4,45 140 154 217 422	342 74,7 58831 22 71038 32 386 86,7 66348 29 52574 28 4,58 C 5,77 4,45 144 160 231 490 27,0-27,0	370 80,6 63676 24 76847 34 419 94,1 72030 30 56807 30 4,59 C 5,80 4,45 147 165 248 504 29,0-29,0
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсаторе Теплопроизвость Полная потребляемая мощность Расход воды через конденсатор Падение давления на конденсаторе Расход воды через конденсаторе Расход воды через испаритель Падение давления на испаритель Падение давления на испарителе ПОКАЗАТЕЛИ ЭНЕРГОЭФФЕКТИВНОС ЕЕК ЕЕЕС ЕSEER СОР ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ Потребляемый ток (в режиме охлаждения) Потребляемый ток (в режиме нагрева) Максимальный ток Пусковой ток ХЛАДАГЕНТ R410A(C1- C2) [1] КОМПРЕССОР Кол-во компрес./контуров	H-HL H-HL H-HL H-HL H-HL H-HL H-HL H-HL	kW kW l/h kPa l/h kPa kW kW l/h kPa l/	212 45,5 36431 29 43858 42 240 53,8 41249 38 32850 37 4,66 B 5,79 4,46 95 105 146 319	243 52,0 41768 38 50272 55 276 62,1 47515 50 37904 49 4,67 B 5,64 4,45 400V 3 104 115 169 341	278 60,4 47876 24 57750 36 314 70,6 54090 32 43140 31 4,61 C 5,72 4,45 3 50Hz 122 135 193 398	314 68,8 53985 19 65229 28 353 79,2 60665 25 48340 24 4,56 C 5,85 4,45	342 74,7 58831 22 71038 32 386 86,7 66348 29 52574 28 4,58 C 5,77 4,45 144 160 231 490	370 80,6 63676 24 76847 34 419 94,1 72030 30 56807 30 4,59 C 5,80 4,45
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсаторе Теплопроизвость Полная потребляемая мощность Расход воды через конденсатор Падение давления на конденсаторе Падение давления на конденсаторе Расход воды через испаритель Падение давления на испарителе Показатели энергоэффективнос ЕЕК ЕЕЕС ЕБЕЕ СОР ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ Потребляемый ток (в режиме охлаждения) Потребляемый ток (в режиме нагрева) Максимальный ток Пусковой ток ХЛАДАГЕНТ R410A(C1- C2) [1] КОМПРЕССОР Кол-во компрес./контуров ИСПАРИТЕЛЬ (ПЛАСТИНЧАТЫЙ)	H-HL H-HL H-HL H-HL H-HL H-HL H-HL H-HL	kW kW I/h kPa I/h kPa kW I/h kPa I/h KPa I/h KPa I/h KPa I/h KPa I/h KPa I/h KPa I/h KPa I/h KPa I/h KPa I/h I/h I/h I/h I/h I/h I/h I/h I/h I/h	212 45,5 36431 29 43858 42 240 53,8 41249 38 32850 37 4,66 B 5,79 4,46 95 105 146 319	243 52,0 41768 38 50272 55 276 62,1 47515 50 37904 49 4,67 B 5,64 4,45 400V 3 104 115 169 341	278 60,4 47876 24 57750 36 314 70,6 54090 32 43140 31 4,61 С 5,72 4,45 3 50Hz 122 135 193 398 18,0-18,0 Мьный 4/2	314 68,8 53985 19 65229 28 353 79,2 60665 25 48340 24 4,56 C 5,85 4,45 140 154 217 422	342 74,7 58831 22 71038 32 386 86,7 66348 29 52574 28 4,58 C 5,77 4,45 144 160 231 490 27,0-27,0	370 80,6 63676 24 76847 34 419 94,1 72030 30 56807 30 4,59 C 5,80 4,45 147 165 248 504 29,0-29,0
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсаторе Теплопроизвость Полная потребляемая мощность Расход воды через конденсатор Падение давления на конденсаторе Падение давления на конденсаторе Расход воды через испаритель Падение давления на испаритель Падение давления на испарителе Показатели энергоэффективнос ЕЕК ЕЕЕС ЕSEER СОР ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ Потребляемый ток (в режиме нагрева) Максимальный ток Пусковой ток ХЛАДАГЕНТ R410A(C1- C2) [1] КОМПРЕССОР Кол-во компрес./контуров ИСПАРИТЕЛЬ (ПЛАСТИНЧАТЫЙ) Количество	H-HL H-HL H-HL H-HL H-HL H-HL H-HL H-HL	kW kW I/h kPa I/h	212 45,5 36431 29 43858 42 240 53,8 41249 38 32850 37 4,66 8 5,79 4,46 95 105 146 319 11,0-11,0	243 52,0 41768 38 50272 55 276 62,1 47515 50 37904 49 4,67 B 5,64 4,45 400V 3 104 115 169 341 13,0-13,0 Спира 4/2	278 60,4 47876 24 57750 36 314 70,6 54090 32 43140 31 4,61 С 5,72 4,45 3 50Hz 122 135 193 398 18,0-18,0 мьный 4/2	314 68,8 53985 19 65229 28 353 79,2 60665 25 48340 24 4,56 C 5,85 4,45 140 154 217 422	342 74,7 58831 22 71038 32 386 86,7 66348 29 52574 28 4,58 C 5,77 4,45 144 160 231 490 27,0-27,0	370 80,6 63676 24 76847 34 419 94,1 72030 30 56807 30 4,59 C 5,80 4,45 147 165 248 504 29,0-29,0
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсаторе Падение давления на конденсаторе Полная потребляемая мощность Расход воды через конденсатор Падение давления на конденсаторе Расход воды через испаритель Падение давления на испарителе Показатели энергоэффективнос ЕЕК ЕЕЕС ЕSEER СОР ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ Потребляемый ток (в режиме охлаждения) Потребляемый ток (в режиме нагрева) Максимальный ток Пусковой ток ХЛАДАГЕНТ R410A(C1- C2) [1] КОМПРЕССОР Колью компрес./контуров ИСПАРИТЕЛЬ (ПЛАСТИНЧАТЫЙ) Количество Присоед, диаметр гидравл. контура – Victaulic	H-HL H-HL H-HL H-HL H-HL H-HL H-HL H-HL	kW kW I/h kPa I/h I/h kPa I/h	212 45,5 36431 29 43858 42 240 53,8 41249 38 32850 37 4,66 B 5,79 4,46 95 105 146 319	243 52,0 41768 38 50272 55 276 62,1 47515 50 37904 49 4,67 B 5,64 4,45 400V 3 104 115 169 341	278 60,4 47876 24 57750 36 314 70,6 54090 32 43140 31 4,61 С 5,72 4,45 3 50Hz 122 135 193 398 18,0-18,0 Мьный 4/2	314 68,8 53985 19 65229 28 353 79,2 60665 25 48340 24 4,56 C 5,85 4,45 140 154 217 422 27,0-27,0	342 74,7 58831 22 71038 32 386 86,7 66348 29 52574 28 4,58 C 5,77 4,45 144 160 231 490 27,0-27,0	370 80,6 63676 24 76847 34 419 94,1 72030 30 56807 30 4,59 C 5,80 4,45 147 165 248 504
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсаторе Падение давления на конденсаторе Полная потребляемая мощность Расход воды через конденсатор Падение давления на конденсаторе Расход воды через испаритель Падение давления на испарителе Показатели энергоэффективнос ЕЕК ЕЕС ЕSEER СОР ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ Потребляемый ток (в режиме охлаждения) Потребляемый ток (в режиме нагрева) Максимальный ток Пусковой ток ХЛАДАГЕНТ R410A(C1- C2) [1] КОМПРЕССОР Кол-во компрес./контуров ИСПАРИТЕЛЬ (ПЛАСТИНЧАТЫЙ) Количество Присоед, диаметр гидравл. контура – Victaulic	H-HL H-HL H-HL H-HL H-HL H-HL H-HL H-HL	kW kW l/h kPa	212 45,5 36431 29 43858 42 240 53,8 41249 38 32850 37 4,66 8 5,79 4,46 95 105 146 319 11,0-11,0	243 52,0 41768 38 50272 55 276 62,1 47515 50 37904 49 4,67 В 5,64 4,45 400V 3 104 115 169 341 13,0-13,0 Спира 4/2	278 60,4 47876 24 57750 36 314 70,6 54090 32 43140 31 4,61 С 5,72 4,45 3 50Hz 122 135 193 398 18,0-18,0 мьный 4/2	314 68,8 53985 19 65229 28 353 79,2 60665 25 48340 24 4,56 C 5,85 4,45 140 154 217 422 27,0-27,0	342 74,7 58831 22 71038 32 386 86,7 66348 29 52574 28 4,58 C 5,77 4,45 144 160 231 490 27,0-27,0	370 80,6 63676 24 76847 34 419 94,1 72030 30 56807 30 4,59 C 5,80 4,45 147 165 248 504
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсаторе Теплопроизвость Полная потребляемая мощность Расход воды через конденсатор Падение давления на конденсаторе Падение давления на конденсаторе Расход воды через испаритель Падение давления на испаритель Падение давления на испарителе ПОКАЗАТЕЛИ ЭНЕРГОЭФФЕКТИВНОС ЕЕК ЕЕЕС ЕSEER СОР ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ Потребляемый ток (в режиме охлаждения) Потребляемый ток (в режиме нагрева) Максимальный ток ХЛАДАГЕНТ R410A(C1- C2) [1] КОМПРЕССОР Кол-во компрес./контуров ИСПАРИТЕЛЬ (ПЛАСТИНЧАТЫЙ) Количество Присоед, диаметр гидравл. контура – Victaulic КОНДЕНСАТОР Количество	H-HL H-HL H-HL H-HL H-HL H-HL H-HL H-HL	kW kW l/h kPa	212 45,5 36431 29 43858 42 240 53,8 41249 38 32850 37 4,66 B 5,79 4,46 95 105 146 319 11,0-11,0 4/2	243 52,0 41768 38 50272 55 276 62,1 47515 50 37904 49 4,67 B 5,64 4,45 400V 3 104 115 169 341 13,0-13,0 Спира 4/2	278 60,4 47876 24 57750 36 314 70,6 54090 32 43140 31 4,61 С 5,72 4,45 3 50Hz 122 135 193 398 18,0-18,0 мьный 4/2 114 114 114 114 114 114 114 11	314 68,8 53985 19 65229 28 353 79,2 60665 25 48340 24 4,56 C 5,85 4,45 140 154 217 422 27,0-27,0 4/2	342 74,7 58831 22 71038 32 386 86,7 66348 29 52574 28 4,58 C 5,77 4,45 144 160 231 490 27,0-27,0 4/2	370 80,6 63676 24 76847 34 419 94,1 72030 30 56807 30 4,59 C 5,80 4,45 147 165 248 504 29,0-29,0 4/2
Холодопроизость Полная потребляемая мощность Расход воды через испаритель Падение давления на испарителе Расход воды через конденсатор Падение давления на конденсаторе Падение давления на конденсаторе Полная потребляемая мощность Расход воды через конденсатор Падение давления на конденсаторе Расход воды через испаритель Падение давления на испарителе Показатели энергоэффективнос ЕЕК ЕЕС ЕSEER СОР ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ Потребляемый ток (в режиме охлаждения) Потребляемый ток (в режиме нагрева) Максимальный ток Пусковой ток ХЛАДАГЕНТ R410A(C1- C2) [1] КОМПРЕССОР Кол-во компрес./контуров ИСПАРИТЕЛЬ (ПЛАСТИНЧАТЫЙ) Количество Присоед, диаметр гидравл. контура – Victaulic	H-HL H-HL H-HL H-HL H-HL H-HL H-HL H-HL	kW kW l/h kPa	212 45,5 36431 29 43858 42 240 53,8 41249 38 32850 37 4,66 8 5,79 4,46 95 105 146 319 11,0-11,0	243 52,0 41768 38 50272 55 276 62,1 47515 50 37904 49 4,67 В 5,64 4,45 400V 3 104 115 169 341 13,0-13,0 Спира 4/2	278 60,4 47876 24 57750 36 314 70,6 54090 32 43140 31 4,61 C 5,72 4,45 3 50Hz 122 135 193 398 18,0-18,0 мьный 4/2 1 2"1/2	314 68,8 53985 19 65229 28 353 79,2 60665 25 48340 24 4,56 C 5,85 4,45 140 154 217 422 27,0-27,0	342 74,7 58831 22 71038 32 386 86,7 66348 29 52574 28 4,58 C 5,77 4,45 144 160 231 490 27,0-27,0	370 80,6 63676 24 76847 34 419 94,1 72030 30 56807 30 4,59 C 5,80 4,45 147 165 248 504

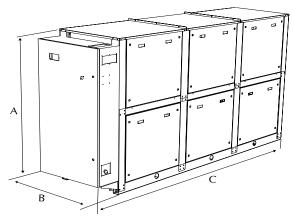
[1] эти данные могут изменяться.

Представленные данные справедливы при следующих условиях:

Режим охлаждения: Температура производим

Режим нагрева:


Температура производимой воды Температура воды на входе конденсатора DT 7 °C 30 °C 5 °C Температура производимой воды Температура воды на входе испарителя DT


10 °C 5 °C

Электропитание = 400В 3 ~ 50 Гц.

Aermec определяет значение звуковой мощности на основании измерений проведённых в соответствии с нормативом 9614-2 в связи с требованиями EUROVENT.

^{*}- указанные данные относятся к режиму работы на охлаждение

Mod. NXW	vers	Ед.изм.	0500	0550	0600	0650	0700	0750	0800	0900	1000	1250	1400
Высота(А)	0	mm	1835	1835	1835	1835	1835	1775	1775	1820	1820	1820	1820
Ширина(В)	0	mm	800	800	800	800	800	800	800	800	800	800	800
Глубина(С)	0	mm	1790	1790	1790	1790	1790	2090	2354	2354	2354	2354	2354
Macca	0	kg	578	582	682	690	727	882	989	1180	1417	1461	1539
Macca			370	302	002	030	, , ,	002	303	1100		1101	1333
Высота(А)	L	mm	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885
Ширина(В)	L	mm	800	800	800	800	800	800	800	800	800	800	800
Глубина(С)	L	mm	2090	2090	2090	2090	2090	2090	2354	2354	2354	2354	2354
Macca	L	kg	750	755	854	863	900	1054	1187	1378	1615	1659	1737
Высота(А)	насосы °	mm	1775	1775	1775	1775	1775	1775	1775	1850	1850	1850	1850
Ширина(В)	насосы °	mm	800	800	800	800	800	800	800	800	800	800	800
Глубина(С)	насосы °	mm	3020	3020	3020	3020	3020	3020	3420	3420	3420	3420	3420
Высота(А)	насосы L	mm	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885
Ширина(В)	насосы L	mm	800	800	800	800	800	800	800	800	800	800	800
Глубина(С)	насосы L	mm	3020	3020	3020	3020	3020	3020	3420	3420	3420	3420	3420
Высота(А)	Н	mm	1835	1835	1835	1835	1835	1775	1775	1820	1820	1820	1820
Ширина(В)	Н	mm	800	800	800	800	800	800	800	800	800	800	800
Глубина(С)	Н	mm	1790	1790	1790	1790	1790	2090	2354	2354	2354	2354	2354
Macca	Н	kg	628	633	734	743	791	948	1042	1275	1545	1577	1657
Высота(А)	H - L	mm	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885
Ширина(В)	H - L	mm	800	800	800	800	800	800	800	800	800	800	800
Глубина(С)	H - L	mm	2090	2090	2090	2090	2090	2090	2354	2354	2354	2354	2354
<u>Macca</u>	H - L	kg	801	805	907	915	963	1121	1240	1473	1743	1775	1855
Высота(А)	насосы Н	mm	1775	1775	1775	1775	1775	1775	1775	1850	1850	1850	1850
Ширина(В)	насосы Н	mm	800	800	800	800	800	800	800	800	800	800	800
<u>Глубина(С)</u>	насосы Н	mm	3020	3020	3020	3020	3020	3020	3420	3420	3420	3420	3420
Высота(А)	насосы H - L	mm	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885
Ширина(В)	насосы H - L	mm	800	800	800	800	800	800	800	800	800	800	800
Глубина(С)	насосы H - L	mm	3020	3020	3020	3020	3020	3020	3420	3420	3420	3420	3420
			100=		400=	400=	100=				1000	1000	1000
Высота(А)	<u>E</u>	mm	1835	1835	1835	1835	1835	1775	1775	1775	1820	1820	1820
Ширина(В)	<u>E</u>	mm	800	800	800	800	800	800	800	800	800	800	800
Глубина(С)	E	mm	1790	1790	1790	1790	1790	2090	2354	2354	2354	2354	2354
D (A)	F I		1005	1005	1005	1005	1005	1005	1005	1005	1005	1005	1005
Высота(А)	E-L	mm	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885
Ширина(В)	E-L	mm	800	800	800	800	800	800	800	800	800	800	800
<u>Глубина(С)</u>	E - L	mm	2090	2090	2090	2090	2090	2090	2354	2354	2354	2354	2354

NXW-E

Компрессорно-испарительные агрегаты Холодопроизводительность от 106 до 385 кВт

Aermec adheres to the EUROVENT Certification Programme. The products concerned appear in the EUROVENT Certified Products Guide.

Особенности

Максимальная энергоэффективность

Продолжительные разработки компании AERMEC в области энергоэффективности применены в серии NXW для достижения высоких показателей, как при полной, так и при частичной нагрузке. В результате эти машины демонстрируют показатели E.E.R. ≥ 5,05 и C.O.P. ≥ 4,45 (Kaacc A Eurovent).

Электронное управление

Современная электронная панель управления позволяет контролировать несколько функций:

- Управлять системой из двух машин, установленных параллельно, как Ведущий и Ведомый;

- Обеспечивать ротацию насосов;
- Управлять инверторным насосом на стороне конденсатора для контроля давления конденсации;
- Настраиваемый таймер;
- Автоматическая компенсация уставки;
- Регистрация данных

Особенности конструкции:

- Корпус и рама выполнены из гальванизированного стального листа с эпоксидным порошковым покрытием (цвет по RAL 9002);
- Высокоэффективные пластинчатые теплообменники:
- Компрессоры с высокой производительностью и низким энергопотреблением;

- Датчики высокого и низкого давления в стандартной комплектации;
- Полное соответствие директивам ЕС по правилам безопасности и электромагнитной совместимости. Электрическую безопасность машин гарантирует блокировка на двери шкафа управления и элементы активной защиты основных компонентов:
- Удаленная панель управления с дружественным пользовательским интерфейсом и возможностью аварийной сигнализации.

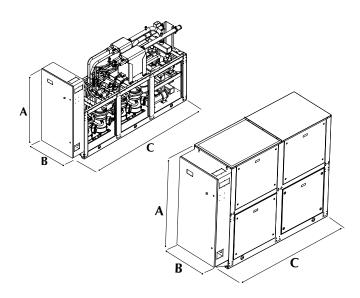
Дополнительное оборудование

- AER485P1: RS-485 интерфейс для управления системой по протоколу MODBUS.
- AERWEB300: опция AERWEB обеспечивающая дистанционное управление работой холодильных машин с помощью персонального компьютера и интернет соединения через стандартный браузер; 4 версии:
- AËRWEB300-6: веб-сервер для дистанционного управления максимум 6 установок через интерфейс RS485;
- AERWEB300-18: веб-сервер для дистанционного управления максимум 18 установок через интерфейс RS485;
- AERWEB300-6G: веб-сервер для дистанционного управления максимум 6 установок через интерфейс RS485 со встроенным модемом GPRS;

- AERWEB300-18G: веб-сервер для дистанционного управления максимум 18 установок через интерфейс RS485 со встроенным модемом GPRS.
- PGD1: В дополнение к основному терминалу, установленному в щите управления, NXW может быть укомплектована выносным терминалом PGD1, обладающим всеми функциями (клавиатура, дисплей) основного, встроенного в машину.
- RIF: Токовый фазовый компенсатор. Подключается параллельно с обмотками электромотора, позволяя при этом снижать потребляемый ток примерно на 10%. Устанавливается на заводе изготовителе, поэтому необходимость установки такой системы должна быть отражена в заказе на поставку оборудования.
- AVX: Виброизолирующие опоры пружинного типа.
- **DRE:** Система плавного пуска, позволяет снижать пусковые токи (примерно на 30% для одноконтурных машин, на 26% для двухконтурных машин и на 22% для трёхконтурных). Доступна только для питания 400В ~ 3ф.

Устанавливается на заводе-изготовителе.

МОДЕЛЬ NXW E - EL												
МОД. NXW	U.M.	0500	0550	0600	0650	0700	750	800	900	1000	1250	1400
Холодопроизводительность	kW	105	113	139	156	177	209	241	273	305	332	360
Полная потребляемая мощность	kW	24,9	26,8	33	36,9	41,7	48,8	56,5	64,7	72,3	78,8	85,3
Расход воды через испаритель	l/h	18031	19480	23988	26918	30381	35935	41488	46976	52463	57187	61909
Падение давления на испарителе	kPa	26	31	28	35	38	41	43	48	31	32	32
ПОКАЗАТЕЛИ ЭНЕРГОЭФФЕКТИ	вности	1										
E.E.R.	W/W	4,22	4,23	4,22	4,24	4,23	4,28	4,27	4,22	4,22	4,22	4,22
ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИ	1КИ					400	V 3 50H					
Потребл. ток (в режиме охлажд.)	Α	54,1	56,7	65,4	70,6	96,3	105,3	114,2	134,4	154,6	156,8	106,2
Максимальный ток	Α	75	80	96	107	122	146	169	193	217	231	248
Пусковой ток	Α	240	245	227	238	289	319	341	398	422	490	504
ХЛАДАГЕНТ												
Хладагент R410A(C1-C2) [1]	Кг		X/	∖АДАГЕН	ГДОЛЖЕ	Н БЫТЬ З	ΑΠΡΑΒΛΕΙ	Н ПОСЛЕ	КАТНОМ	ΚΑ ΑΓΡΕΓΑ	TA	
КОМПРЕССОР					C	ПИРАЛЬН	ΙЫЙ					
Кол-во /контуров	n°/n°	3/2	3/2	4/2	4/2	4/2	4/2	4/2	4/2	4/2	4/2	4/2
ИСПАРИТЕЛЬ (пластинчатый)												
Кол-во							1					
Присоед. диаметр гидравл. контура	Ø	2"1/2	2"1/2	2»1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"	3"	3"
Трубопроводы хладагента (при длине	до 10м)											
Газовая лини (С1 + С2)	Ø mm	28/22	28/22	28/28	28/28	28/28	28/28	28/28	35/28	35/35	35/42	42/42
Жидкостная линия (С1 + С2)	Ømm	28/22	28/22	28/28	28/28	28/28	28/28	28/28	35/28	35/35	35/35	35/35
АКУСТИЧЕСКИЕ ХАРАКТЕРИСТИ	КИ											
Звуковая мощность		78	79	79	80	82	86	88	88	88	90	90
Звуковое давление	— dB(A)	46	47	47	48	50	54	56	56	56	58	58
	ub(\(\tau\)	72	73	73	74	76	80	82	82	82	84	84
Звуковое давление		40	41	41	42	44	48	50	50	50	52	52


[1] эти данные могут изменяться.

Представленные данные справедливы при следующих условиях:
Режим охлаждения:

- Темп. воды на выходе 7°C Темп. конденсации 45°C
- 5 K $-\Delta t =$

- Указанные данные относятся к режиму работы на охлаждение.
- Аегтес определяет значение звуковой мощности на основании измерений проведённых в соответствии с нормативом ISO 9614-2 в связи с требованиями EUROVENT.

Размеры (мм)

Модель NXW	Модиф.	U.M.	0500	0550	0600	0650	0700	0750	0800	0900	1000	1250	1400
Высота (А)		mm	1835	1835	1835	1835	1835	1775	1775	1775	1820	1820	1820
Ширина (В)	Е	mm	800	800	800	800	800	800	800	800	800	800	800
Длина (С)		mm	1790	1790	1790	1790	1790	2090	2354	2354	2354	2354	2354
Высота (А)		mm	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885
Ширина (В)	EL	mm	800	800	800	800	800	800	800	800	800	800	800
Длина (С)		mm	2090	2090	2090	2090	2090	2090	2090	2354	2354	2354	2354

Холодильные машины и тепловые насосы с холодопроизводительностью от 179 до 715 кВт теплопроизводительностью от 191 до 767 кВт

R134a

Aermec is part of the EUROVENT Certification Programme

These products can be found in the EUROVENT Guide of certified products.

Характеристики

• Одиннадцать типоразмеров (четыре однокомпрессорных и семь двухкомпрессорных моделей).

Модификации:

- С заправкой газообразного хладагента R134a.
- Модификации, работающие только на охлаждение, тепловые насосы.
- Модификации с частичной или полной рекуперацией тепла.
- Стандартная модификация (о): нагрев воды до температуры 55°C в режиме теплового насоса.
- Модификация L: пониженный уровень шума, обеспечиваемый применением толстостенных оцинкованных панелей корпуса с повышенным звукопоглощением.

Компрессоры:

 Высокоэффективные компрессоры винтового типа с низким уровнем шума и плавной регулировкой производитель ности в пределах от 40 до 100% при использовании стандартного терморегулирующего вентиля (от 25 до 100% при использовании элек-

- тронного вентиля, поставляемого в качестве дополнитель - ного оборудования).
- Запорные вентили на выходе компрессоров и в контуре циркуляции жидкости.
- Автоматический трансформатор в цепи каждого компрессора.
- Двухконтурные теплообменники пластинчатого типа, оптимизированные для работы с газообразным хладагентом R134a.

Система управления:

- Модульная микропроцессорная система.
- Независимое управление отдельными контурами.
- Распределительная коробка с нумерацией мест подключения кабелей.
- Бесступенчатая регулировка производительности с динамической визуализацией холодпроизводительности.
- Функция «постоянной работы»: в критических условиях холодильная машина не отключается, а автоматически переводится в соответствующий режим работы.
- Автоматический контроль соответствия

- измеренных и заданных значений температуры с помошью аналоговых входов (от 4 до 20 мА, от 0 до 10 В) или по показаниям внешнего датчика.
- Автоматическая адаптация температурного дифференциала к продолжительности работы компрессора.
- PDC (Pull Down Control) система, препятствующая изменению производительности при быстром приближении температуры воды к заданному значению.
- DL (Demand Limit) система, делающая возможным ограничение энергопотребления холодильной машины в случае недостаточной мощности источника питания (например, при пиковых нагрузках).
- Компактные размеры.
- Индикация рабочих параметров на нескольких языках.

Конструкция корпуса: оцинкованный листовой металл с антикоррозионным покрытием из полиэстера.

Дополнительное оборудование

- AER485P1: Интерфейс RS 485 для подключения к системе телеметрического управления на основе протокола MODBUS.
- PRV: Панель дистанционного управления холодильной машиной.
- RIF: Система перефазировки, подключаемая параллельно электромотору и снижающая потребляемый им ток. Эта система монтируется в процессе изготовления холодильной машины, поэтому необходимость такого дооборудования должна быть указана в заказе на поставку.
- AVX: Пружинные виброизолирующие опоры корпуса.
- AERWEB30: позволяет осуществлять контроль за работой чиллера с персонального компьютера через последовательный интерфейс. Использование дополнительных модулей AERMODEM позволяет осуществлять контроль через телефонную линию, а AERMODEMGSM через сеть GSM. AERWEB может поддерживать до 9 чиллеров, каждый из которых должен быть укомплектован опцией AER485 или AER485P2
- SAP: Имеется широкий выбор накопительных баков и насосных агрегатов. Необходимые модели этих устройств выбираются согласно таблице совместимости дополнительного оборудования.
- MULTICHILLER: система, служащая для управления работой, включения или отключения отдельных холодильных машин, входящих в единую систему и подключенных параллельно друг другу, при постоянстве расхода в испарителях.
- AKW: ACUSTIC KIT: Опция шумопонижения осуществляется путем применения экологичного материала высокой плотности в корпусных панелях.

				С	овместим	ость допол	нительног	о оборудо	вания			
Модель	Vers.	0701	0801	0901	1101	1402	1602	1802	2002	2202	2502	2802
AERWEB30		V	V	V	V	~	V	~	V	V	V	V
MULTICHILLER		V	V	V	V	~	V	~	V	V	V	V
AER485P1		V	V	V	V	✓ (x2)	✓ (x2)	√ (x2)	✓ (x2)	✓ (x2)	✓ (x2)	✓ (x2)
RIF		161	161	201	241	161(x2)	161(x2)	201(x2)	201-241	241(x2)	301(x2)	301(x2)
PRV3		~	~	~	~	~	~	~	~	~	~	~
	°/L	651	652	652	656	658	658	659	667	661	661	661
	E	668	668	668	669	670	670	670	671	672	672	672
AVX	D	651	652	652	654	658	659	659	667	661	661	661
	DE	668	668	668	669	670	670	670	671	672	672	672
	T	652	655	655	657	662	662	662	663	664	664	664
AKW		~	~	~	~	~	~	~	~	~	~	~

Выбор модификации

Комбинируя различные опции, можно подобрать такую модель серии WSA, которая наилучшим образом соответствует конкретным требованиям. Приводимая ниже таблица иллюстрирует метод выбора нужного кодового обозначения модификации.

Кодовые обозначения опций:

Кодовое обозначение серии:

Типоразмер:

0701, 0801, 0901, 1101, 1402, 1602, 1802, 2202, 2502, 2802 Область применения:

° с охлаждением воды до + 4°C (стандартная модификация)

Х с электронным терморегулирующим вентилем

Модель:

° стандартная

Рекуперация тепла: ° без рекуперации

D с пароохладителем

Т с системой полной рекуперации

Модификация:

стандартная

L с пониженным уровнем шума

Конденсатор:

по стандарту PED

Электропитание:

- ° трехфазное, 400 В, 50 Гц, с плавкими предохранителями 8 трехфазное, 400 В, 50 Гц, с термомагнитными размыкателями цепи
- 2 трехфазное, 230 В, 50 Гц, с плавкими предохранителями
- 4 трехфазное, 230 В, 50 Гц, с термомагнитными размыкателями цепи
- 5 трехфазное, 500 В, 50 Гц, с плавкими предохранителями
- 9 трехфазное, 500 В, 50 Гц, с термомагнитными размыкателями цепи

Внимание! Стандартные модификации обозначаются символом «°».

Пример: WSA1602L8 это холодильная машина серии WSA типоразмера 1602, с пониженным уровнем шума, с теплообменником по стандарту PED, с распределительным шитом для питания моторов компрессоров от напряжения 400 В (трехфазного), 50 Гц, с термомагнитным размыкателем цепи питания. Хотя каждая имеющаяся опция имеет свое строго определенное обозначение, обозначение стандартной модификации «°» указывать не обязательно.

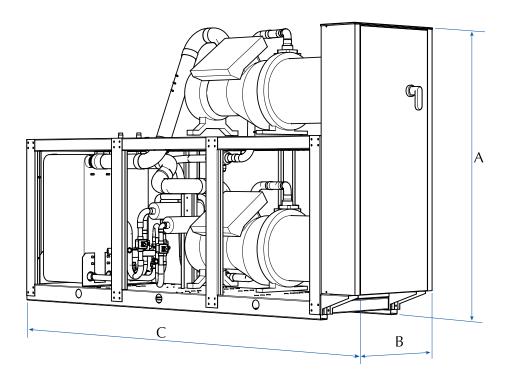
Mod WSA		0701	0801	0901	1101	1402	1602	1802	2002	2202	2502	2802
Холодопроизводительность	kW	179	213	234	294	357	423	470	529	588	663	715
Полная потребляемая мощность	kW	37	42	48	58	74	83	97	106	115	131	140
Расход воды в испарителе	l/h	30790	36640	40250	50570	61400	72760	80840	90980	101140	114040	122980
Падение давления в испарителе	kPa	20	20	19	23	36	40	41	45	48	53	62
Потребление воды в конденсаторе	l/h	37150	43860	48500	60540	74130	87030	97520	109280	120920	136570	147060
Падение давления в конденсаторе	kPa	27	27	26	31	50	55	58	62	67	75	88
Теплопроизводительность	kW	191	218	245	308	375	434	491	557	625	687	767
Теплопроизводительность	kW	43	48	56	70	86	97	111	126	140	151	172
Расход воды в конденсаторе	l/h	32850	37500	42140	52980	64500	74650	84450	95810	107500	118160	131920
Падение давления в конденсаторе	kPa	41	20	19	24	36	39	42	46	50	55	74
Потребление воды в испарителе	l/h	25460	29240	32510	40940	49710	57960	65360	74160	83420	92190	102340
Падение давления в испарителе	kPa	12	12	12	14	22	24	25	27	29	32	44
E.E.R.	W/W	4,84	5,07	4,88	5,07	4,82	5,10	4,85	4.97	5,11	5,06	5,11
EEEC ⁽¹⁾		В	A	В	A	В	A	В	В	A	A	A
C.O.P.	W/W	4,44	4,54	4,38	4,40	4,36	4,47	4,42	4.43	4,46	4,55	4,46
EEEC ⁽¹⁾		В	A	В	В	В	A	В	В	A	A	A
Электроптиание						400В, т	грехфазн	ое, 50Гц				
Потребляемый ток (охлаждение)	A	66	74	82	101	132	148	164	184	203	233	233
Потребляемый ток (нагрев)	A	73	82	91	117	146	164	183	209	235	257	258
Максимальный ток (FLA)	A	124	144	162	182	248	288	324	344	364	430	430
Пусковой ток (LRA)	A	163	192	229	300	387	336	391	462	482	575	575
Компрессоры	Тип					Двухви	1НТОВОЙ					
Количество	n°	1	1	1	1	2	2	2	2	2	2	2
производительности (стандартн. вентиль)	%	40-100	40-100	40-100	40-100	20-100	20-100	20-100	20-100	20-100	20-100	20-100
производительности (электр. вентиль)	%	25-100	25-100	25-100	25-100	12,5-100	12,5-100	12,5-100	12,5-100	12,5-100	12,5-100	12,5-100
Испаритель	Тип					Пласти	1ЧНЫЙ					
Количество	n°	1	1	1	1	1	1	1	1	1	1	1
Трубопроводные соединения	Д	3"	3"	3"	3"	3"	3"	3"	3"	3"	3"	3"
Трубопроводные соединения	Тип					Victauli	ic					
Конденсатор	Тип					Пласти	1ЧНЫЙ					
Количество	n°	1	1	1	1	1	1	1	1	1	1	1
Трубопроводные соединения	Ø	3"	3"	3"	3"	3"	3"	3"	3"	3"	3"	3"
Трубопроводные соединения	Тип					Victauli	ic					
Звуковое давление ⁽²⁾	db(A)	54	54	54	60	57	57	57	61	63	63	63

(1) EEEC класс энергетической эффективности по стандарту EUROVENT (2) Звуковое давление измерено в свободном пространстве на расстоянии 10 м при коэффициенте направленности = 2 (стандарт ISO 3744).

Указанные технические характеристики относятся к следующим условиям:

Охлаждение:

- температура воды на выходе 7° C;


- температура воды на входе конденсатора 30° C;

- перепад температур $t=5^{\circ}$ C.

Нагрев:

- температура производимой воды 45° C

- температура воды на входе в испаритель 10° C $\Delta t = 5$ K

Mod WSA (° - L)		0701	0801	0901	1101	1402	1602	1802	2002	2202	2502	2802
Высота (A) °/Е	mm	1775	1775	1775	1775	1975	1975	2005	1985	2065	2065	2065
Высота (A) L/LE	mm	1775	1775	1775	1775	2120	2120	2120	2120	2120	2120	2120
Ширина (В)	mm	810	810	810	810	810	810	810	810	810	810	810
Глубина (С)	mm	2960	2960	2960	3360	2960	2960	2960	3360	3360	3360	3360
Macca	kg (°)	1251	1301	1357	1788	2028	2097	2169	2598	3000	3095	3095
	kg (L)	1379	1429	1485	1934	2256	2325	2397	2855	3257	3352	3352
<u> </u>	kg (D/DE)	1479	1529	1585	2045	2256	2325	2397	2855	3257	3352	3352

Mod WSA (° - L)		0701 T	0801 T	0901 T	1101 T	1402 T	1602 T	1802 T	2002 T	2202 T	2502 T	2802 T
Высота (A) °	mm	2000	2000	2000	2000	2050	2050	2050	2050	2065	2065	2065
Высота (A) L	mm	2120	2120	2120	2120	2120	2120	2120	2120	2120	2120	2120
Ширина (В)	mm	810	810	810	810	1250	1250	1250	1250	1250	1250	1250
Глубина (С)	mm	2960	2960	2960	3360	3060	3060	3060	3460	3460	3460	3460
Macca	kg	1479	1529	1585	2045	2294	2363	2435	2894	3296	3391	3391

WSB

Холодильные машины и тепловые насосы с холодопроизводительностью от 172 до 704 кВт теплопроизводительностью от 184 до 741 кВт.

R134a

Aermec is part of the EUROVENT Certification Programme These products can be found in the EUROVENT Guide of certified products.

Характеристики

 Одиннадцать типоразмеров (четыре однокомпрессорных и семь двухком прессорных моделей).

Модификации

- С заправкой газообразного хладагента R134a.
- Модификации, работающие только на охлаждение, тепловые насосы.
- Модификации с частичной или полной рекуперацией тепла.
- Стандартная модификация (о): нагрев воды до температуры 55°C в режиме теплового насоса.
- Модификация Y: охлаждение воды до температуры -6°С, не требует дополнительной заправки хладагента.

Компрессоры

• Высокоэффективные компрессоры винтового типа с низким уровнем шума и плавной регулировкой производительности в пределах от 40 до 100% при использовании стандартного терморегулирующего вентиля (от 25 до 100% при использовании электронного вентиля, поставляемого в качестве дополнитель-

- ного оборудования).
- Запорные вентили на выходе компрессоров и в контуре циркуляции жидкости.
- Автоматический трансформатор в цепи каждого компрессора. Двухконтурные теплообменники пластинчатого типа, оптимизированные для работы с газообразным хладагентом R134a.

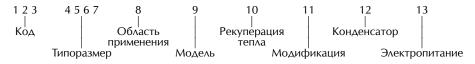
Система управления

- Модульная микропроцессорная система.
- Независимое управление отдельными контурами.
- Распределительная коробка с нумерацией мест подключения кабелей.
- Бесступенчатая регулировка производительности с динамической визуализацией холодпроизводительности.
- Функция «постоянной работы»: в критических условиях холодильная машина неотключается, а автоматически переводится в соответствующий режим работы.
- Автоматический контроль соответствия измеренных и заданных значений температуры с помощью аналоговых входов (от

- 4 до 20 мA, от 0 до 10 B) или по показаниям внешнего датчика.
- Автоматическая адаптация температурного дифференциала к продолжительности работы компрессора.
- PDC (Pull Down Control) система, препятствующая изменению производительности при быстром приближении температуры воды к заданному значению.
- DL (Demand Limit) система, делающая возможным ограничение энергопотребления холодильной машины в случае недостаточной мощности источника питания (например, при пиковых нагрузках).
- Компактные размеры.
- Индикация рабочих параметров на нескольких языках.

Конструкция корпуса: оцинкованный листовой металл с антикоррозионным покрытием из полиэстера.

Дополнительное оборудование


- AER485P1: Интерфейс RS 485 для подключения к системе телеметрического управления на основе протокола MODBUS.
- PRV: Панель дистанционного управления холодильной машиной.
- RIF: Система перефазировки, подключаемая параллельно электромотору и снижающая потребляемый им ток. Эта система монтируется в процессе изготовления холодильной машины, поэтому необходимость такого дооборудования должна быть указана в заказе на поставку.
- AVX: Пружинные виброизолирующие опоры корпуса.
- AERWEB30: позволяет осуществлять контроль за работой чиллера с персонального компьютера через последовательный интерфейс. Использование дополнительных модулей AERMODEM позволяет осуществлять контроль через телефонную линию, а AERMODEMGSM через сеть GSM. AERWEB может поддерживать до 9 чиллеров, каждый из которых должен быть укомплектован опцией AER485 или AER485P2
- SAP: Имеется широкий выбор накопительных баков и насосных агрегатов. Необходимые модели этих устройств выбираются согласно таблице совместимости дополнительного оборудования.
- MULTICHILLER: система, служащая для управления работой, включения или отключения отдельных холодильных машин, входящих в единую систему и подключенных параллельно друг другу, при постоянстве расхода в испарителях.
- AKW: ACUSTIC KIT: Опция шумопонижения осуществляется путем применения экологичного материала высокой плотности в корпусных панелях.

				Совме	стимость ,	дополните	льного об	орудовани	1Я			
Модель	Vers.	0701	0801	0901	1101	1402	1602	1802	2002	2202	2502	2802
AERWEB30		~	V	V	V	~	V	V	V	V	V	V
MULTICHILLER		~	~	~	V	~	V	V	V	V	V	V
AER485P1		~	~	~	~	✓ (x2)	√ (x2)	✓ (x2)				
RIF		161	161	201	241	161(x2)	161(x2)	201(x2)	201-241	241(x2)	301(x2)	301(x2)
PRV3		~	~	~	~	/	~	~	~	~	V	/
	°/L	651	651	651	653	656	658	658	667	660	661	661
	E	668	668	668	669	670	670	670	671	672	672	672
AVX	D	651	651	652	653	658	658	659	667	660	661	661
	T	651	652	652	654	662	662	662	663	664	664	664
	DE	668	668	668	669	670	670	670	671	672	672	672
AKW		~	~	~	~	~	~	~	~	~	V	~

Выбор модификации

Комбинируя различные опции, можно подобрать такую модель серии WSB, которая наилучшим образом соответствует конкретным требованиям. Приводимая ниже таблица иллюстрирует метод выбора нужного кодового обозначения модификации.

Кодовое обозначение опции:

Кодовое обозначение серии: WSB

Типоразмер:

0701, 0801, 0901, 1101, 1402, 1602, 1802, 2202, 2502, 2802 Область применения:

° - с охлаждением воды до + 4°С (стандартная модификация) Х - с электронным терморегулирующим вентилем

Молель:

- стандартная

Рекуперация тепла:

° - без рекуперации

D - с пароохладителем

Т - с системой полной рекуперации

Модификация:

- стандартная

L - с пониженным уровнем шума

Конденсатор:

- по стандарту PED

Электропитание:

9- трехфазное, 400 В, 50 Гц, с плавкими предохранителями
8 - трехфазное, 400 В, 50 Гц, с термомагнитными размыкателями цепи
2 - трехфазное, 230 В, 50 Гц, с плавкими предохранителями
4 - трехфазное, 230 В, 50 Гц, с термомагнитными размыкателями цепи
5 - трехфазное, 500 В, 50 Гц, с плавкими предохранителями
9 - трехфазное, 500 В, 50 Гц, с термомагнитными размыкателями цепи

Внимание! Стандартные модификации обозначаются символом «°».

Пример: WSB1602L8 это холодильная машина серии WSB типоразмера 1602, с пониженным уровнем шума, с теплообменником по стандарту PED, с распределительным шитом для питания моторов компрессоров от напряжения 400 В (трехфазного), 50 Гц, с термомагнитным размыкателем цепи питания. Хотя каждая имеющаяся опция имеет свое строго определенное обозначение, обозначение стандартной модификации («°») указывать не обязательно.

Модель WSB		0701	0801	0901	1101	1402	1602	1802	2002	2202	2502	2802
Холодопроизводительность	kW	172	201	226	281	344	397	453	507	566	648	704
Полная потребляемая мошность		37	42	49	58	74	84	97	107	117	132	140
Расход воды в испарителе	l/h	29580	34570	38870	48330	59170	68280	77920	87150	97350	111460	121090
Падение давления в испарителе	kPa	40	35	30	34	52	57	54	56	58	57	67
Потребление воды в конденсаторе		35950	41800	47300	58310	71900	82730	94600	105520	117480	134160	145170
Падение давления в конденсаторе	kPa	56,0	47,8	42,2	47,3	73,0	79,0	77,0	79	82,0	81.0	95,0
Теплопроизводительность	kW	184	211	241	303	361	417	474	540	606	677	741
Теплопроизводительность	kW	44	49	56	71	87	98	112	127	141	153	173
Расход воды в конденсаторе	l/h	31650	36290	41450	52120	62090	71720	81530	92820	104230	116440	127450
Падение давления в конденсаторе	kPa	41	35	31	36	54	57	56	63	62	59	80
Потребление воды в испарителе	l/h	24080	27860	31820	39900	47130	54870	62260	71030	79980	90130	97700
Падение давления в испарителе		24	21	19	21	31	34	33	34	36	35	47
E.E.R.	W/W	4,65	4,79	4,61	4,84	4,65	4,73	4,67	4.74	4,84	4,91	5,03
EEEC ⁽¹⁾		В	В	В	В	В	В	В	В	В	В	В
C.O.P.	W/W	4,18	4,31	4,30	4,27	4,15	4,26	4,23	4.26	4,30	4,42	4,28
EEEC ⁽¹⁾		В	В	В	В	В	В	В	В	В	В	В
Эектроптиание						400V 3~ 5	50Hz					
Потребляемый ток (охлаждение)	A	66	74	82	102	132	149	165	184	205	233	233
Потребляемый ток (нагрев)	A	73	82	91	118	147	166	184	210	237	259	259
Максимальный ток (FLA)	A	124	144	162	182	248	288	324	344	364	430	430
Пусковой ток (LRA)	A	163	192	229	300	287	336	391	462	482	575	575
Компрессоры	Тип					Двухвин	товой					
Количество	n°	1	1	1	1	2	2	2	2	2	2	2
производительности (стандартн. вентиль)	%	40-100	40-100	40-100	40-100	20-100	20-100	20-100	20-100	20-100	20-100	20-100
производительности (электр. вентиль)	%	25-100	25-100	25-100	25-100	12,5-100	12,5-100	12,5-100	12,5-100	12,5-100	12,5-100	12,5-100
Испаритель	Тип					Пластин	чатый					
Количество	n°	1	1	1	1	1	1	1	1	1	1	1
Трубопроводные соединения	Ø	3"	3"	3"	3"	3"	3"	3"	3"	3"	3"	3"
Трубопроводные соединения	Тип					Victaulic						
Конденсатор	Тип					Пластин	чатый					
Количество	n°	1	1	1	1	1	1	1	1	1	1	1
Трубопроводные соединения	Ø	3"	3"	3"	3"	3"	3"	3"	3"	3"	3"	3"
Трубопроводные соединения	Тип					Victaulic						
Звуковое давление(2)	db(A)	58	58	59	60	61	61	62	63	63	63	63

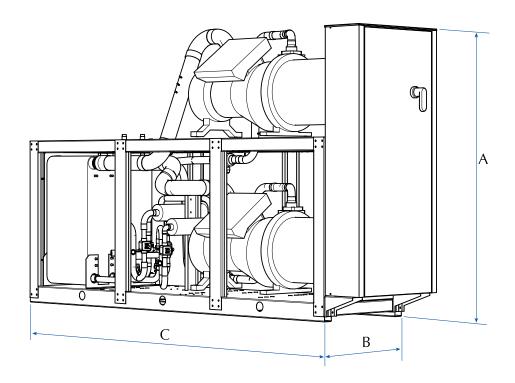
((1) EEEC класс энергетической эффективности по стандарту EUROVENT (2) Звуковое давление измерено в свободном пространстве на расстоянии 10 м при коэффициенте направленности = 2 (стандарт ISO 3744).

Указанные технические характеристики относятся к следующим условиям:

Охлаждение:

- температура воды на выходе 7° C;

- температура воды на входе конденсатора 30° C;


- перепад температур $t=5^{\circ}$ C.

— Нагрев:

- температура воды на выходе 45 °C

- температура воды на входе испарителя 10 °C

- перепад температур t = 5 K

Модель WSB (° L)		0701	0801	0901	1101	1402	1602	1802	2002	2202	2502	2802
Высота (A) °	mm	1775	1775	1775	1775	1975	1975	2005	1985	2065	2065	2065
Высота (A) L	mm	1775	1775	1775	1775	2120	2120	2120	2120	2120	2120	2120
Ширина (В)	mm	810	810	810	810	810	810	810	810	810	810	810
Глубина (С)	mm	2960	2960	2960	3360	2960	2960	2960	3360	3360	3360	3360
Macca	kg (°)	1251	1301	1357	1788	2028	2097	2169	2598	3000	3095	3095
	kg (L)	1379	1429	1485	1934	2256	2325	2397	2855	3257	3352	3352
	kg (D/DE)	1479	1529	1585	2045	2256	2325	2397	2855	3257	3352	3352

Модель WSB (° L)		0701 T	0801 T	0901 T	1101 T	1402 T	1602 T	1802 T	2002 T	2202 T	2502 T	2802 T
Высота (A) °	mm	2000	2000	2000	2000	2050	2050	2050	2050	2065	2065	2065
Высота (A) L	mm	2120	2120	2120	2120	2120	2120	2120	2120	2120	2120	2120
Ширина (В)	mm	810	810	810	810	1250	1250	1250	1250	1250	1250	1250
Глубина (С)	mm	2960	2960	2960	3360	3060	3060	3060	3460	3460	3460	3460
Macca	kg	1479	1529	1585	2045	2294	2363	2435	2894	3296	3391	3391

WSA-E WSB-E

Компрессорно-испарительные агрегаты Холодопроизводительность от 155 до 676 кВт

Aermec participates in the EUROVENT Program: LCP / W / P / C The products of interest can be found on the website www.eurovent-certification.com

Особенности

- Высокоэффективные компрессоры винтового типа с низким уровнем шума и плавной регулировкой производительности в пределах от 40 до 100% при использовании стандартного терморегулирующего вентиля (от 25 до 100% при использовании электронного вентиля)
- Запорные вентили на линии нагнетания компрессора и на жидкостной линии.
- Трансформатор тока в цепи каждого компрессора.
- Двухконтурные теплообменники пластинчатого типа, оптимизированные для работы с хладагентом R134a на моделях с двумя компрессорами.
- Модульная микропроцессорная система управления.

- Независимое управление отдельными контурами.
- Щит управления с номерованными подключениями кабелей.
- Бесступенчатая регулировка производительности с динамической визуализацией холодопроизводительности.
- Функция «постоянной работы»: в критических условиях холодильная машина не отключается, а автоматически переводится в соответствующий режим работы.
- Автоматическая компенсация Точки Уставки с помощью аналогового сигнала 4-20 mA или 0-10В или от датчика температуры наружного воздуха.
- Автоматическая адаптация температурного дифференциала к продолжительно-

- сти работы компрессора.
- PDC «Система понижающего контроля»: предотвращает повышение мощности, когда температура воды быстро достигает значения Уставки.
- DL «Ограничение потребления»: позволяет ограничивать потребляемую электрическую мощность в случае общего недостатка мощности на объекте (например, при временных пиковых нагрузках или в момент запуска генераторов).
- Компактные размеры.
- Многоязычное меню контроллера.
- Металлическая панель управления с антикоррозионным покрытием из полиэстера.

Дополнительное оборудование

- AER485P1: RS-485 интерфейс для управления системой по протоколу MODBUS.
- RIF: Токовый фазовый компенсатор. Подключается параллельно с обмотками электромотора, позволяя при этом снижать потребляемый ток примерно на 10%. Устанавливается на заводе изготовителе, поэтому необходимость установки такой системы должна быть отражена в заказе на поставку оборудования.
- AVX: Пружинные виброизолирующие опоры корпуса.
- AERWEB300: Опция AERWEB обеспечивающая дистанционное управление работой холодильных машин с помощью персонального компьютера и интернет соедине-
- ния через стандартный браузер; 4 версии: AERWEB300-6: Веб-сервер для дистанционного управления максимум 6 установок через интерфейс RS485;
- AERWEB300-18: Веб-сервер для дистанционного управления максимум 18 установок через интерфейс RS485;
- AERWEB300-6G: Веб-сервер для дистанционного управления максимум 6 установок через интерфейс RS485 со встроенным модемом GPRS;
- AERWEB300-18G: Веб-сервер для дистанционного управления максимум 18 установок через интерфейс RS485 со встроенным модемом GPRS.
- SAP: доступны выносные гидромодули с

- баками-накопителями и насосами. Обращайтесь к соответствующему техническому руководству.
- MULTICHILLER: Система управления, предназначенная для включения/отключения отдельных холодильных машин, входящих в единую систему и подключенных параллельно. При этом поддерживается постоянный расход воды во всех испарителях.
- АКW: «Акустический пакет»: Позволяет уменьшить шумность работы машины посредством помещения компрессоров в стальные кожухи с высокоплотной экологичной шумоизоляцией.

Модель WSA - E		0701	0801	0901	1101	1402	1602	1802	2002	2202	2502	2802
Холодопроизводительность	kW	163	192	212	263	326	385	428	481	539	601	676
Полная потребляемая мощность	kW	41	47	54	66	82	93	108	120	132	146	159
Потребление воды в испарителе (7°C)	l/h	28040	33020	36460	45240	56070	66220	73620	82790	92710	103370	116270
Падение давления в испарителе	kPa	18	18	17	21	33	37	38	40	45	49	59
E.E.R.	W/W	3.98	4.09	3.93	3.98	3.98	4.14	3.96	4.00	4.08	4.12	4.25
EEEC ⁽¹⁾		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
Электропитание						40	0V 3 ∼ 5	0 Hz				
Потребляемый ток охлаждение	Α	72	81	90	113	144	162	180	204	226	254	272
Максимальный ток (FLA)	Α	124	144	162	182	248	288	324	344	364	430	430
Пусковой ток (LRA)	Α	163	192	229	300	287	336	391	462	482	575	575
Компрессоры	Тип					Д	вухвинто	вой				
Количество	n°	1	1	1	1	2	2	2	2	2	2	2
Частичная загрузка (стандартн. ТРВ)	%	40-100	40-100	40-100	40-100	20-100	20-100	20-100	20-100	20-100	20-100	20-100
Частичная загрузка (электр. ТРВ)	%	25-100	25-100	25-100	25-100	12,5-	12,5-	12,5-	12,5-	12,5-	12,5-100	12,5-100
						100	100	100	100	100		
Испаритель	Тип					Π.	ластинча	тый				
Количество	n°	1	11	11	1	11	11	1	11	11	1	1
Трубопроводные соединения	Ø	3"	3"	3"	3"	3"	3"	3"	3"	3"	3"	3"
Трубопроводные соединения	Тип						Victauli	С				
Звуковое давление(2)	dB(A)	54	54	54	60	57	57	57	63	63	63	63

Типоразмеры 0601 и 1202 не доступны без конденсатора.

- (1) EEEC класс энергетической эффективности по стандарту EUROVENT
- (2) Звуковое давление измерено в свободном пространстве на расстоянии 10 м при коэффициенте направленности = 2 соответствии со стандартом ISO 3744.

Испарительный агрегат:

- вода на выходе из испарителя = 7°C
- температура конденсации 45 °C
- $\Delta t = 5K$

Модель WSB - E		0701	0801	0901	1101	1402	1602	1802	2002	2202	2502	2802
Холодопроизводительность	kW	155	185	207	258	311	365	410	465	521	594	665
Полная потребляемая мощность	kW	41	46	53	66	82	92	107	120	131	146	159
Потребление воды в испарителе (7°C)	l/h	26660	31820	35600	44380	53490	62780	70520	79924	89610	102170	114380
Падение давления в испарителе	kPa	40	35	30	34	48	53	50	51	54	53	64
E.E.R.	W/W	3.78	4.02	3.91	3.91	3.79	3.97	3.83	3.88	3.98	4.07	4.18
EEEC(1)		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
Электропитание						40	00V 3~ 5	50Hz				
Потребляемый ток охлаждение	Α	71	81	89	113	143	161	178	203	226	254	272
Максимальный ток (FLA)	Α	124	144	162	182	248	288	324	344	364	430	430
Пусковой ток (LRA)	Α	225	264	310	391	287	336	391	462	482	575	575
Компрессоры	Тип					Д	вухвинто	овой				
Количество	n°	11	1	1	1	2	2	2	2	2	2	2
Частичная загрузка (стандартн. ТРВ)	%	40-100	40-100	40-100	40-100	20-100	20-100	20-100	20-100	20-100	20-100	20-100
Частичная загрузка (электр. ТРВ)	%	25-100	25-100	25-100	25-100	12,5-	12,5-	12,5-	12,5-	12,5-	12,5-100	12,5-100
						100	100	100	100	100		
Испаритель	Тип					П	ластинча	атый				
Количество	n°	1	1	1	1	1	1	1	1	1	1	1
Трубопроводные соединения	Ø	3"	3"	3"	3"	3"	3"	3"	3"	3"	3″	3″
Трубопроводные соединения	Тип	-					Victauli	c		-		
Звуковое давление ⁽²⁾	dB(A)	58	58	59	60	61	61	62	61	63	63	63

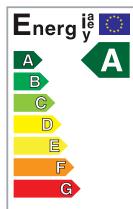
- (1) EEEC класс энергетической эффективности по стандарту EUROVEN
- (2) Звуковое давление измерено в свободном пространстве на расстоянии 10 м при коэффициенте направленности = 2 соответствии со стандартом ISO 3744.

Испарительный агрегат:

- вода на выходе из испарителя = 7°C
- температура конденсации 45 °C
- $\Delta t = 5K$

WF

Чиллер с водяным охлаждением, с двухвинтовыми компрессорами Холодопроизводительность от 632 до 1554 кВт Теплопроизводительность от 678 до 1667 кВт


R134a

Aermec participates in the EUROVENT Certification Program up to 1500 kW

The products of interest figure in the EUROVENT Guide of Certified products.

- ОПТИМИЗИРОВАН ДЛЯ РАБОТЫ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ КОНДЕНСАЦИИ НАПРИМЕР, ДЛЯ РАБОТЫ ТОЛЬКО В РЕЖИМЕ ОХЛАЖДЕНИЯ С ВОДОЙ ОТ ГРАДИРЕН ИЛИ ИЗ ВОДОЁМА, ИЛИ ДЛЯ РАБОТЫ В РЕЖИМЕ ТЕПЛОВОГО НАСОСА И ПРОИЗВОДСТВА ВОДЫ НИЗКОЙ ТЕМПЕРАТУРЫ
- СТАНДАРТНАЯ И ВЫСОКОЭФФЕКТИВНАЯ МОДИФИКАЦИИ
- МАКСИМАЛЬНАЯ ТЕМПЕРАТУРА ВОДЫ НА ВЫХОДЕ ИЗ КОНДЕНСАТОРА: +50°C
- КОЖУХОТРУБНЫЕ ТЕПЛООБМЕННИКИ
- ЭЛЕКТРОННЫЙ ТЕРМОРЕГУЛИРУЮЩИЙ ВЕНТИЛЬ В СТАНДАРТНОЙ КОМПЛЕКТАЦИИ, ОН ПОЗВОЛЯЕТ:
- ПРОИЗВОДСТВО ОХЛАЖДЕННОЙ ВОДЫ С ТЕМПЕРАТУРОЙ ДО 6°C
- ПЛАВНОЕ РЕГУЛИРОВАНИЕ ХОЛОДОПРОИЗВОДИТЕЛЬНОСТИ В ПРЕДЕЛАХ ОТ 12,5 ДО 100%

Особенности

- 8 типоразмеров.
- Два независимых холодильных контура
- Высокоэффективные винтовые компрессоры, оптимизированные для работы с фреоном R134a.
- Теплообменники с очень большой площалью теплообмена.
- Электронный терморегулирующий вентиль в стандартной комплектации.
- Компактные размеры.
- Возможно использование в режиме теплового насоса (только с гидравлическим переключением режима) с температурой производимой воды до +50°C с водой из водоёма или геотермального источника. Для работы в режиме теплового насоса необходима опция IS – изоляция конденсатора.
- Границы работоспособности:
- Температура воды на выходе из конденсатора до +50 °C
- Температура воды на выходе из испарителя до 6 °C
- Доступные модификации:

- частичная рекуперация;
- полная рекуперация;
- Пониженная шумность в низкошумной модификации компрессоры помещаются в отсеки из толстой гальванизированной стали, обработанные изнутри высокоплотными звукоизолирующими панелями.
- Модульное микропроцессорное управление
- Каждый контур управляется собственный контроллером;
- Контроль температуры выходящей воды с плавным регулированием производительности (от 12,5 до 100% для каждого компрессора) и динамическое отображение холодопроизводительности;
- Контрольный щит с нумерованными кабелями;
- Контроль конденсации с помощью сигнала 0-10В (постоянного тока) для управления клапаном пропорционального регулирования/насосом с изменяемой скоростью в зависимости от давления;
- Амперометрический трансформатор для каждого компрессора в стандартной ком-

- плектации;
- Функция «Всегда в работе»: в критических условиях машина не останавливается, но продолжает работать регулируя параметры самостоятельно;
- Автоматическая компенсация Уставки с аналоговым входом 4-20 мА или 0-10В или от датчика температуры наружного воздуха;
- Саморегулирующийся дифференциальный счетчик моточасов каждого компрессора для уверенности в равном времени наработки.
- PDC «Система понижающего контроля»: предотвращает повышение мощности, когда температура воды быстро достигает значения Уставки.
- DL «Ограничение потребления»: позволяет ограничивать потребляемую электрическую мощность в случае общего недостатка мощности на объекте (например, при временных пиковых нагрузках или в момент запуска генераторов).;
- Многоязычное меню контроллера.

Дополнительное оборудование

- AER485P1: Интерфейс стандарта RS-485 для систем диспетчеризации с использованием протокола MODBUS.
- PRV3: Дистанционная проводная панель управления.
- **REF:** Токовый фазовый компенсатор. Его параллельное соединение с мотором позволяет снизить потребляемый ток (примерно на 10%). Данное оборудование может быть установлено только на заводе-изготовителе.
- AVX: Виброизолирующие опоры пружинного типа.
- AERWEB30: Опция AERWEB позволяет удаленно управлять чиллером через последо-
- вательный порт с обычного ПК. Используя дополнительные модули, данная опция позволяет управлять чиллером через телефонную сеть с помощью AERMODEM, либо через сеть GSM используя AERMODEM GSM. С помощью AERWEB может управлять группой до 9 чиллеров, каждый из которых должен быть укомплектован соответствующей интерфейсной картой AER485 или AER485P1.
- MULTICHILLER: Система управления для группы чиллеров установленных параллельно (до 9 единиц), позволяющая включать/ выключать каждый индивидуальный чил-
- лер в группе и всегда поддерживать постоянный расход воды через испарители.
- AKW: «Акустический пакет» Позволяет уменьшить шумность работы машины посредством помещения компрессоров в стальные кожухи с высокоплотной экологичной шумоизоляцией. Доступен только в модификации «L». Может быть установлен только на заводе-изготовителе.
- IS: «Изоляционный пакет» для конденсаторов. Обязательный аксессуар для машин, работающих в режиме теплового насоса. Может быть установлен только на заводе-изготовителе.

		,	Совмести	мость дополн	ительного об	орудования		
Mod	2512	2812	3212	3612	4212	4812	5612	6412
AERWEB30	✓	V	V	V	/	/	V	/
MULTICHILLER	/	V	V	V	/	/	V	/
AER485P1	✓ (x2)							
PRV3	✓	V	V	V	/	/	V	/
AVX	V	V	V	V	V	V	V	V
RIF	RIFWF 2512	RIFWF 2812	RIFWF 3212	RIFWF 3612	RIFWF 4212	RIFWF 4812	RIFWF 5612	RIFWF 6412
AKW(WF-L)	V	V	V	V	V	V	V	V
IS1	°/A	°/A	0	0	0	0		
IS2			A	A	A	A	0	0
IS3							A	A

Стандартная/Низкошумна	Я		C	овместимость	AVX			
Mod WF	2512°	2812°	3212°	3612°	4212°	4812°	5612°	6412°
AVX	673	673	673	674	674	674	675	675
Mod WF	2512°L	2812°L	3212°L	3612°L	4212°L	4812°L	5612°L	6412°L
AVX	673	673	674	674	674	674	675	675
Повышенной эффективно	ости/Низкошу	иная повыше	нной эффект	ивности				
Mod WF	2512A	2812A	3212A	3612A	4212A	4812A	5612A	6412A
AVX	673	673	674	675	675	675	676	676
Mod WF	2512AL	2812AL	3212AL	3612AL	4212AL	4812AL	5612AL	6412AL
AVX	674	674	675	675	675	675	676	676

REF - AKW - IS - опции, которые устанавливаются только на заводе-изготовителе

° = стандартная модификация

А = модификация с повышенной эффективностью

°L/AL = низкошумные модификации

Выбор модификации

Комбинируя различные модификации и опции, можно выбрать модель холодильной машины, наиболее полно соответствующую конкретным требованиям.

Кодовые обозначения:

Наименование:

WF

Типоразмер:

2502, 2802, 3202, 3602, 4202, 4802, 5602, 6402

Модель:

- стандартная
- А с повышенной эффективностью

Система рекуперации:

- ° без рекуперации тепла
- D система частичной рекуперации тепла
- Т система полной рекуперации тепла

Модификация:

- стандартная
- L с пониженным уровнем шума

Теплообменник:

стандартный

Электропитание:

- трехфазное, 400 В, 50 Гц, с плавкими предохранителями
- 8 трехфазное, 400 В, 50 Гц, с термомагнитными размыкателями
- 2 трехфазное, 230 B, 50 Гц, с плавкими предохранителями 4 трехфазное, 230 B, 50 Гц, с термомагнитными размыкателями
- 5 трехфазное, 500 В, 50 Гц, с плавкими предохранителями
- 9 трехфазное, 500 В, 50 Гц, с термомагнитными размыкателями.

Примечание: стандартные модели и модификации обозначаются символом « $^{\circ}$ ». **Пример кодового обозначения: WF2502A8**

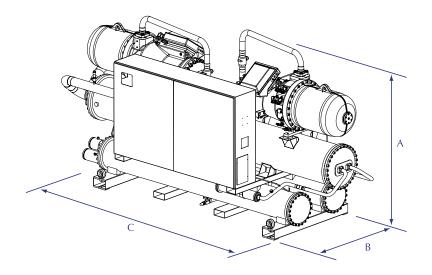
Это обозначение соответствует высокоэффективной холодильной машине серии WF типоразмера 2502 в стандартной модификации с теплообменниками по стандарту PED, электромоторами компрессоров, работающими от трехфазного напряжения 400 В, 50 Гц, с термомагнитными размыкателями цепи питания.

Каждая модификация имеет определенное кодовое обозначение, но символ стандартной модификации («°») можно не указывать

Mod WF	2512°	2812°	3212°	3612°	4212°	4812°	5612°	6412°
Холодопроизводительность kW	632	723	875	987	1114	1281	1412	1553
Полная потребляемая мощность kW	$-\frac{032}{122}$	139	169	190	214	246	272	300
Расход воды в испарителе I/h	$-\frac{122}{108704}$	124356	150500	169764	191608	220332	242864	267116
Падение давления в испарителе	$-\frac{100701}{41}$	58	56	47	43	62	65	75
Потребление воды в конденсаторе I/h	129688	148264	179568	202444	228416	262644	289648	318716
Падение давления в конденсаторе 1/11	$-\frac{129088}{16}$	16	18	16	18	24	17	19
Потребляемый ток А	$-\frac{10}{212}$	243	282	317	349	416	457	506
Е.Е.R.	$-\frac{212}{5,18}$	5,20	5,18	5,19	5,21	5,21	5,19	5,18
E.E.R. class (Eurovent)	$-\frac{3,18}{A}$	A	A A	A	A	A A	A A	A A
E.S.E.E.R.	$-\frac{\Lambda}{6,16}$	6,19	6,16	6,18	6,19	6,20	6,18	6,16
Теплопроизводительность kW	$-\frac{6,10}{678}$	775	939	1059	1194	1372	1514	1667
Потребляемая мощность kW	$-\frac{676}{156}$	178	216	243	274	314	348	384
Расход воды через конденсатор l/h	$-\frac{136}{116616}$	133307	161508	182146	205368	235984	260408	286724
Падение давления на конденсаторе kPa	$-\frac{110010}{13}$	13	14	13	14	19	14	15
Расход воды через испаритель 1/h	$-\frac{13}{89784}$	102691	124356	140350	158240	181976	200552	220676
Падение давления на испарителе kPa	$-\frac{69764}{28}$	39	38	32	29	43	44	51
Потребляемый ток А	$-\frac{20}{271}$	312	361	406	447	533	585	648
С.О.Р.	$-\frac{271}{4,35}$	4,35	4,35	4,36	4,36	4,37	4,35	4,34
C.O.P. class (Eurovent)	$-\frac{4,33}{B}$	В	В	В	B	B	В	B
Электропитание			400V-3-50				~	
Максимальный ток (FLA) A	294	336	396	446	494	572	636	702
Пусковой ток (LRA) A	$-\frac{271}{447}$	528	596	659	712	872	968	1156
Кол-во. двухвинтовых компрессоров n°	$-\frac{447}{2}$	2	2	2	2	2	2	2
Диапазон производит. (электронный ТРВ) %	$-\frac{2}{12.5-100}$	12.5-100	12.5-100	12.5-100	12.5-100	12.5-100	12.5-100	12.5-100
Кол-во. кожухотрубных испарителей n°	- 12.6 100	1	1	1	1	1	1	1
Присоед. размеры испарителя (виктаулик)	- 6"	6"	6"	8"	8"	8"	8"	8"
Кол-во. кожухотрубных конденсаторов n°	$-\frac{3}{2}$	2	2	2	2	2	2	2
Присоед, размеры конденсатора (виктаулик)		5"	5"	5"	5"	5"	6"	6"
Звуковое давление(1) db(A)	93,6	94,0	93,5	93,7	94,6	95,5	97,3	97,9
Звуковое давление (т) db(A)	61,6	62,0	61,5	61,7	62,6	63,5	65,3	65,9
эвуковое давление ист.								
	_							
Mod WF	2512A	2812A	3212A	3612A	4212A	4812A	5612A	6412A
Холодопроизводительность kW	641	728	891	1007	1137	1282	1417	1554
Полная потребляемая мощность kW	115	131	160	180	203	229	258	285
Расход воды в испарителе 1/h	110252	125216	153252	173204	195564	220504	243724	267288
Падение давления в испарителе kPa	44	59	62	44	62	42	41	51
Потребление воды в конденсаторе 1/h	130032	147748	180772	204164	230480	259892	288100	316308
Падение давления в конденсаторе kPa	<u>63</u>	64	72	69	69	74	74	77
Потребляемый ток А	202	232	268	303	332	392	437	483
E.E.R.	5,57	5,56	5,57	5,59	5,60	5,60	5,49	5,45
E.E.R. class (Eurovent)	_ <u>A</u>	A	A	A	A	A	A	A
E.S.E.E.R.	6,63	6,61	6,63	6,66	6,67	6,66	6,54	6,49
Теплопроизводительность kW	676	769	940	1062	1199	1353	1501	1648
Потребляемая мощность kW	147	167	204	231	260	293	330	364
Расход воды через конденсатор l/h	116272	132268	161680	182664	206228	232716	258172	283456
Падение давления на конденсаторе kPa	51	51	58	56	55	59	59	62
Расход воды через испаритель 1/h	90986	103544	126592	142932	161508	182320	201412	220848
Падение давления на испарителе kPa	30	40	42	30	42	29	28	35
Потребляемый ток А	258	297	343	388	425	501	559	619
C.O.P. W/W	4,60	4,60	4,61	4,60	4,61	4,62	4,55	4,53
C.O.P. class (Eurovent)	<u>A</u>	A	A 400V-3-50	A	A	A	A	A
Электропитание	20.4	226			40.4	572	(2)	702
Максимальный ток (FLA) А	294	336	396	446	494	572	636	702
Пусковой ток (LRA) А	_ 447	528 2	596 2	659 2	712	872 2	968	1156
Кол-во. двухвинтовых компрессоров n°	_ <u> </u>				2		2	2
<u>Диапазон производит. (электронный ТРВ)</u> %	12.5-100		12.5-100	12.5-100	12.5-100	12.5-100	12.5-100	12.5-100
Кол-во. кожухотрубных испарителей n°	_ 1	1 8"	1 8"	10"	10"	10"	10"	10"
Присоед, размеры испарителя (виктаулик) Ø	8"	2			2			
Кол-во. кожухотрубных конденсаторов n°	- 2 4"	4"	2	2	5"	<u>2</u> 5"	<u>2</u> 6"	<u>2</u> 6"
Присоед, размеры конденсатора (виктаулик)			5"	5"				
Звуковое давление(1) db(A)	93,6	94,0	93,5	93,7	94,6	95,5	97,3	97,9
Звуковое давление db(A)	61,6	62,0	61,5	61,7	62,6	63,5	65,3	65,9

(1) Класс энергетической эффективности по стандарту EUROVENT.

Указанные технические характеристики относятся к следующим условиям:


Охлаждение: температура воды на выходе 7 °C температура воды на входе конденсатора 30 °C t = 5 °C

Нагрев:температура воды на выходе 45 °C;
температура воды на входе испарителя 10 °C;
перепад температуры = 5 K t = 5 °C

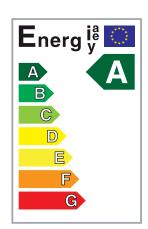
Звуковое давление измерено в свободном пространстве, на расстоянии 10 м, при коэффициенте направленности, равном 2. *: V =соединение с хомутом

Размеры (мм)

Mod WF		2512°	2812°	3212°	3612°	4212°	4812°	5612°	6412°
Высота (А)	mm	2100	2100	2050	2120	2140	2140	2210	2210
Ширина (В)	mm	1470	1470	1470	1520	1550	1550	1600	1600
Длина (С)	mm	3690	3690	4030	4030	4370	4370	4610	4760
Macca	Kg	3570	3650	4470	4750	5050	5180	6030	6260
Mod WF		2512A	2812A	3212A	3612A	4212A	4812A	5612A	6412A
Высота (А)	mm	2180	2180	2190	2340	2340	2340	2380	2380
Ширина (В)	mm	1470	1470	1537	1695	1695	1695	1700	1700
Длина (С)	mm	4330	4330	4330	4370	4550	4550	4800	4800
Macca	Kg	4080	4140	5470	5950	6240	6440	7230	7360

Предупреждение: Для получения информации о размерах для модификаций D-T-L-E пожалуйста, обратитесь в главный офис компании AERMEC S.p.A.

HWF


Чиллер с водяным охлаждением, с двухвинтовыми компрессорами Холодопроизводительность от 630 до 1529 кВт Теплопроизводительность от 670 до 1609 кВт

R134a

Aermec participates in the EUROVENT Certification Program up to 1500 kW The products of interest figure in the EUROVENT Guide of Certified products.

- ОПТИМИЗИРОВАН ДЛЯ РАБОТЫ ПРИ ВЫСОКИХ ТЕМПЕРАТУРАХ КОНДЕНСАЦИИ А ТАКЖЕ ДЛЯ РАБОТЫ В РЕЖИМЕ ТЕПЛОВОГО НАСОСА
- СТАНДАРТНАЯ И ВЫСОКОЭФФЕКТИВНАЯ МОДИФИКАЦИИ
- МАКСИМАЛЬНАЯ ТЕМПЕРАТУРА ВОДЫ НА ВЫХОДЕ ИЗ КОНДЕНСАТОРА: +60°C
- КОЖУХОТРУБНЫЕ ТЕПЛООБМЕННИКИ
- ЭЛЕКТРОННЫЙ ТЕРМОРЕГУЛИРУЮЩИЙ ВЕНТИЛЬ В СТАНДАРТНОЙ КОМПЛЕКТАЦИИ. ОН ПОЗВОЛЯЕТ:
- ПРОИЗВОДСТВО ОХЛАЖДЕННОЙ ВОДЫ С ТЕМПЕРАТУРОЙ ДО 6°C
- ПЛАВНОЕ РЕГУЛИРОВАНИЕ ХОЛОДОПРОИЗВОДИТЕЛЬНОСТИ В ПРЕДЕЛАХ ОТ 12.5 ДО 100%

Особенности

- 8 типоразмеров.
- Два независимых холодильных контура
- Высокоэффективные винтовые компрессоры, оптимизированные для работы с фреоном R134a.
- Теплообменники с очень большой площалью теплообмена.
- Электронный терморегулирующий вентиль в стандартной комплектации.
- Компактные размеры.
- Возможно использование в режиме теплового насоса (только с гидравлическим переключением режима) с температурой производимой воды до +50°C с водой из водоёма или геотермального источника. Для работы в режиме теплового насоса необходима опция IS – изоляция конденсатора.
- Границы работоспособности:
- Температура воды на выходе из конденсатора до $+50\,^{\circ}\text{C}$
- Температура воды на выходе из испарителя до 6 $^{\circ}$ С
- Доступные модификации:

- частичная рекуперация;
- полная рекуперация;
- Пониженная шумность в низкошумной модификации компрессоры помещаются в отсеки из толстой гальванизированной стали, обработанные изнутри высокоплотными звукоизолирующими панелями.
- Модульное микропроцессорное управление
- Каждый контур управляется собственный контроллером;
- Контроль температуры выходящей воды с плавным регулированием производительности (от 12,5 до 100% для каждого компрессора) и динамическое отображение холодопроизводительности;
- Контрольный щит с нумерованными кабелями;
- Контроль конденсации с помощью сигнала 0-10В (постоянного тока) для управления клапаном пропорционального регулирования/насосом с изменяемой скоростью в зависимости от давления;
- Амперометрический трансформатор для каждого компрессора в стандартной ком-

- плектации;
- Функция «Всегда в работе»: в критических условиях машина не останавливается, но продолжает работать регулируя параметры самостоятельно;
- Автоматическая компенсация Уставки с аналоговым входом 4-20 мА или 0-10В или от датчика температуры наружного воздуха;
- Саморегулирующийся дифференциальный счетчик моточасов каждого компрессора для уверенности в равном времени наработки.
- PDC «Система понижающего контроля»: предотвращает повышение мощности, когда температура воды быстро достигает значения Уставки.
- DL «Ограничение потребления»: позволяет ограничивать потребляемую электрическую мощность в случае общего недостатка мощности на объекте (например, при временных пиковых нагрузках или в момент запуска генераторов).;
- Многоязычное меню контроллера.

Дополнительное оборудование

- AER485P1: Интерфейс стандарта RS-485 для систем диспетчеризации с использованием протокола MODBUS.
- PRV3: Дистанционная проводная панель управления.
- **REF:** Токовый фазовый компенсатор. Его параллельное соединение с мотором позволяет снизить потребляемый ток (примерно на 10%). Данное оборудование может быть установлено только на заводе-изготовителе.
- AVX: Виброизолирующие опоры пружинного типа.
- AERWEB30: Опция AERWEB позволяет удаленно управлять чиллером через последо-
- вательный порт с обычного ПК. Используя дополнительные модули, данная опция позволяет управлять чиллером через телефонную сеть с помощью AERMODEM, либо через сеть GSM используя AERMODEM GSM. С помощью AERWEB может управлять группой до 9 чиллеров, каждый из которых должен быть укомплектован соответствующей интерфейсной картой AER485 или AER485P1.
- MULTICHILLER: Система управления для группы чиллеров установленных параллельно (до 9 единиц), позволяющая включать/ выключать каждый индивидуальный чил-
- лер в группе и всегда поддерживать постоянный расход воды через испарители.
- **АКW:** «Акустический пакет» Позволяет уменьшить шумность работы машины посредством помещения компрессоров в стальные кожухи с высокоплотной экологичной шумоизоляцией. Доступен только в модификации «L». Может быть установлен только на заводе-изготовителе.
- **IS:** «Изоляционный пакет» для конденсаторов. Обязательный аксессуар для машин, работающих в режиме теплового насоса. Может быть установлен только на заводе-изготовителе.

		Сов	местимость до	полнительного (оборудования			
Mod	2512	2812	3212	3612	4212	4812	5612	6412
AERWEB30	V	V	V	V	V	V	V	V
MULTICHILLER	V	V	V	V	V	V	V	V
AER485P1	✓ (x2)	✓ (x2)	✓ (x2)	✓ (x2)	✓ (x2)	✓ (x2)	✓ (x2)	✓ (x2)
PRV3	V	V	V	V	V	V	V	V
AVX	V	V	V	V	V	V	V	V
RIF	RIFHWF 2512	RIFHWF 2812	RIFHWF 3212	RIFHWF 3612	RIFHWF 4212	RIFHWF 4812	RIFHWF 5612	RIFHWF 6412
AKW(HWF-L)	/	V	V	V	V	V	V	V
IS1	°/A	°/A	0	0	0	0		
IS2	·		A	A	A	A	0	0
IS3							A	A

Стандартная/Ни	ізкошумная			Совместимо	сть AVX			
Mod HWF	2512°	2812°	3212°	3612°	4212°	4812°	5612°	6412°
AVX	673	673	673	674	674	674	675	675
Mod HWF	2512°L	2812°L	3212°L	3612°L	4212°L	4812°L	5612°L	6412°L
AVX	673	673	674	674	674	674	675	675
Повышенной эф	рфективности/ Н и	изкошумная по	вышенной эфф	рективности				
Mod HWF	2512A	2812A	3212A	3612A	4212A	4812A	5612A	6412A
AVX	673	673	674	675	675	675	676	676
Mod HWF	2512AL	2812AL	3212AL	3612AL	4212AL	4812AL	5612AL	6412AL
AVX	674	674	675	675	675	675	676	676

RIF - AKW - IS - опции, которые устанавливаются только на заводе-изготовителе

= стандартная модификация

= модификация с повышенной эффективностью

°L/AL = низкошумные модификации

Выбор модификации

Комбинируя различные опции, можно подобрать такую модель, которая наиболее полно отвечает требованиям заказчика.

Кодовые обозначения опций:

Код: HWF

Типоразмер:

2512, 2812, 3212, 3612, 4212, 4812, 5612, 6412

Модель:

- Оптимизирована для высоких температур конденсации

Модификация:

Стандартная; А – Повышенной эффективности;

Модификация:

– Стандартная;

- L Низкошумная;
- Система рекуперации:

– Без рекуперации;

D – Частичная рекуперация;

Т – полная рекуперация (не доступна для модификации «Е»)

Конденсатор:

Стандартный;

Стандартный,
 Электропитание:
 400В 3 ~ 50 Гц с предохранителями
 400В 3 ~ 50 Гц с термомагнитными размыкателями
 500В 3 ~ 50 Гц с предохранителями (только для типоразмеров 2512 и 2812)

– 500В 3 ~ 50 Гц с термомагнитными размыкателями (только

для типоразмеров

Предупреждение: стандартные опции отмечены символом «°»;

Пример кодового обозначения: HWF2512A8

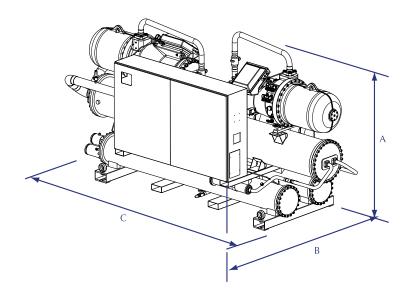
Это обозначение соответствует холодильной машине HWF, типоразмера 2512, повышенной эффективности, с теплообменниками, соответствующими стандарту PED, с электропитанием 400В 3 ~ 50 Гц с термомагнитными размыкателями.

Как было замечено ранее, каждая опция представляется отдельно от всех остальных, поэтому нет необходимости указывать в кодовом обозначении все стандартные компоненты постановкой символов «°».

) (1 m/m		25120	20120	22120	2 < 1 2 0	12120	10120	5.120	<4100
Mod HWF	1 347	2512°	2812°	3212°	3612°	4212°	4812°	5612°	6412°
Холодопроизводительность	kW	630	716	846	949	1095	1261	1421	1519
Потребляемая мощность	kW	127	144	169	191	220	252	286	305
Расход воды в испарителе	l/h	108360	123152	145512	163228	188340	216892	244412	261268
Падение давления в испарителе	kPa	41	56	53	44	41	60	65	72
Потребление воды в конденсаторе		130204	147924	174580	196080	226180	260236	293604	313725
Падение давления в конденсаторе	kPa	16	16	17	15	17	23	18	18
Потребляемый ток	A	226	255	286	314	378	426	488	530
E.E.R.		4,96	4,97	5,01	4,97	4,98	5,00	4,97	4,98
E.E.R. class (Eurovent)		В	В	В	В	В	В	В	В
E.S.E.E.R.		5,85	5,87	5,91	5,86	5,87	5,90	5,86	5,88
Теплопроизводительность	kW	670	762	898	1009	1163	1338	1512	1615
Потребляемая мощность	kW	149	170	199	225	259	297	338	360
Расход воды через конденсатор	l/h	115240	131064	154456	173548	200036	230128	260064	277780
Падение давления на конденсаторе		13	12	13	12	14	18	14	14
Расход воды через испаритель	l/h	89612	101824	120228	134848	155482	179044	201928	215860
Падение давления на испарителе	kPa	28	39	36	30	28	41	45	49
Потребляемый ток	A	267	300	337	371	446	503	575	625
C.O.P.		4,50	4,48	4,51	4,48	4,49	4,50	4,47	4,49
C.O.P. class (Eurovent)		A	A	A	A	A	A	A	A
Электропитание		_			400V-3-50Hz	;			
Максимальный ток (FLA)	A	370	418	468	516	612	690	776	846
Пиковой ток (LRA)	A	545	613	670	723	892	995	1193	1340
Кол-во. двухвинтовых компрессоров	n°	2	2	2	2	2	2	2	2
Диапазон производит. (электронный ТРВ)	%	12.5-100	12.5-100	12.5-100	12.5-100	12.5-100	12.5-100	12.5-100	12.5-100
Кол-во. кожухотрубных испарителей	n°	1	1	1	1	1	1	1	1
Присоед. размеры испарителя (виктаулик)	Ø	6"	6"	6"	8"	8"	8"	8"	8"
Кол-во. кожухотрубных конденсаторов		2	2	2	2	2	2	2	2
Присоед. размеры конденсатора (виктаулик)		5"	5"	5"	5"	5"	5"	6"	6"
Звуковое давление(1)	db(A)	93,6	94,0	93,5	93,7	94,6	95,5	97,3	97,9
Звуковое давление	db(A)	61,6	62,0	61,5	61,7	62,6	63,5	65,3	65,9

Mod HWF		2512A	2812A	3212A	3612A	4212A	4812A	5612A	6412A
Холодопроизводительность	kW	645	733	858	969	1112	1253	1439	1529
Полная потребляемая мощность	kW	123	140	164	185	212	239	275	293
Расход воды в испарителе	l/h	110940	126076	147584	166668	191264	215516	247500	262992
Падение давления в испарителе	kPa	44	60	57	41	59	40	42	50
Потребление воды в конденсаторе	l/h	132096	150156	175792	198488	227728	256624	294800	313388
Падение давления в конденсаторе	kPa	65	66	68	66	67	72	77	76
Потребляемый ток	A	221	249	278	306	367	408	471	514
E.E.R.		5,24	5,24	5,23	5,24	5,25	5,24	5,23	5,22
E.E.R. class (Eurovent)		Α	A	A	A	A	A	A	A
E.S.E.E.R.		6,19	6,18	6,17	6,18	6,19	6,19	6,17	6,16
Теплопроизводительность	kW	678	771	902	1019	1168	1317	1513	1609
Потребляемая мощность	kW	145	165	193	218	250	282	325	346
Расход воды через конденсатор	l/h	116616	132612	155144	175268	200892	226528	260236	276748
Падение давления на конденсаторе		51	52	53	51	52	56	60	59
Расход воды через испаритель	l/h	91676	104232	121948	137772	157892	178024	204336	217236
Падение давления на испарителе	kPa	30	41	39	28	40	28	29	34
Потребляемый ток	A	261	293	328	361	433	481	556	606
C.O.P.		4,68	4,67	4,67	4,67	4,67	4,67	4,66	4,65
C.O.P. class (Eurovent)		A	A	A	A	A	A	A	A
Электропитание		_			400V-3-50Hz	z			
Максимальный ток (FLA)	A	370	418	468	516	612	690	776	846
Пусковой ток (LRA)	A	545	613	670	723	892	995	1193	1340
Кол-во. двухвинтовых компрессоров	n°	2	2	2	2	2	2	2	2
Диапазон производит. (электронный ТРВ)	%	12.5-100	12.5-100	12.5-100	12.5-100	12.5-100	12.5-100	12.5-100	12.5-100
Кол-во. кожухотрубных испарителей	n°	1	1	1	1	1	1	1	1
Присоед. размеры испарителя (виктаулик)	Ø	8"	8"	8"	10"	10"	10"	10"	10"
Кол-во. кожухотрубных конденсаторов		2	2	2	2	2	2	2	2
Присоед. размеры конденсатора (виктаулик)	Ø	4"	4"	5"	5"	5"	5"	6"	6"
Звуковое давление(1)	db(A)	93,6	94,0	93,5	93,7	94,6	95,5	97,3	97,9
Звуковое давление	db(A)	61,6	62,0	61,5	61,7	62,6	63,5	65,3	65,9

⁽¹⁾ Звуковое давление измерено в свободном пространстве с фактором направленности Q=2 на расстоянии 10м., согласно стандарту ISO 3744.


Указана производительность машин при следующих условиях:

Режим нагрева: - Испаритель (вход/выход) 40 °C/45 °C - Конденсатор (вход/выход) 10 °C/5°C

Режим охлаждения: - Испаритель (вход/выход) 12 °C/7 °C - Конденсатор (вход/выход) 30 °C/35°C

⁻ С применением изоляции конденсаторов (обязательная опция)

Mod HWF		2512	2812	3212	3612	4212	4812	5612	6412
Высота (А)	mm	2100	2100	2050	2120	2140	2140	2210	2210
Ширина (В)	mm	1470	1470	1470	1520	1550	1550	1600	1600
Длина (С)	mm	3690	3690	4030	4030	4370	4370	4610	4760
Macca	Kg	3570	3650	4470	4750	5100	5200	6110	6310
	_				·			·	
Mod HWF		2512A	2812A	3212A	3612A	4212A	4812A	5612A	6412A
Высота (А)	mm	2180	2180	2190	2340	2340	2340	2380	2380
Ширина (В)	mm	1470	1470	1537	1695	1695	1695	1700	1700
Длина (С)	mm	4330	4330	4330	4370	4550	4550	4800	4800
Macca	Kg	4080	4140	5470	5950	6290	6460	7310	7410
Ширина (В) Длина (С)	mm	4330	4330	4330	4370	4550	4550	4800	4800

Предупреждение: Для получения информации о размерах для модификаций D-T-L- пожалуйста, обратитесь в главный офис компании AERMEC S.p.A.

HWF-E WF-E

Компрессорно-испарительные агрегаты с двухвинтовыми компрессорами Холодопроизводительность от 540 до 1382 кВт

Aermec participate in the EUROVENT program: LCP / W / P / R up to 1500 kW the products are present on the site www.eurovent-certification.com

- СТАНДАРТНАЯ И ВЫСОКОЭФФЕКТИВНАЯ МОДИФИКАЦИИ
- КОЖУХОТРУБНЫЙ ТЕПЛООБМЕННИК
- ЭЛЕКТРОННЫЙ ТЕРМОРЕГУЛИРУЮЩИЙ ВЕНТИЛЬ В СТАНДАРТНОЙ КОМПЛЕКТАЦИИ, ОН ПОЗВОЛЯЕТ:
 - ПРОИЗВОДСТВО ОХЛАЖДЕННОЙ ВОДЫ С ТЕМПЕРАТУРОЙ ДО -6°C
 - ПЛАВНОЕ РЕГУЛИРОВАНИЕ ХОЛОДОПРОИЗВОДИТЕЛЬНОСТИ В ПРЕДЕЛАХ ОТ 12,5 ДО 100%

Особенности

- Каждый тип компрессорно-испаритель- ных агрегатов имеет в 8 типоразмерах
- Два независимых контура
- Теплообменники с очень большой площадью теплообмена
- Компактные размеры
- Компрессорно-испарительный агрегат
- Пониженная шумность в низкошумной модификации компрессоры помещаются в отсеки из толстой гальванизированной стали, обработанные изнутри высокоплотными звукоизолирующими панелями.
- Модульное микропроцессорное управление
- Резервирование (каждый контур управляется собственным контроллером)
- Контроль температуры выходящей воды с плавным регулированием производительности (от 12,5 до 100% для каждого компрессора) и динамическое отображение холодопроизводительности.
- Амперометрический трансформатор для каждого компрессора в стандартной комплектации
- Функция «Всегда в работе»: в критических условиях машина не останавливается, но продолжает работать, регулируя параметры самостоятельно
- Автоматическая компенсация Уставки с аналоговым входом 4-20 мА или 0-10В или от датчика температуры наружного воздуха
- Саморегулирующийся дифференциальный счетчик моточасов каждого компрессора для уверенности в равном времени наработки.
- PDC «Система понижающего контроля»: предотвращает повышение мощности, когда температура воды быстро достигает значения Уставки.
- DL «Ограничение потребления»: позволяет ограничивать потребляемую электрическую мощность в случае общего недостатка мощности на объекте (например, при временных пиковых нагрузках или в момент запуска генераторов).
- Многоязычное меню контроллера.

Дополнительное оборудование

- AER485P1: Интерфейс стандарта RS-485 для систем диспетчеризации с использованием протокола MODBUS.
- PRV3: Дистанционная проводная панель управления.
- RIF: Токовый фазовый компенсатор. Его параллельное соединение с мотором позволяет снизить потребляемый ток (примерно на 10%). Данное оборудование может быть установлено только на заводе-изготовителе.
- AERWEB300: Опция AERWEB обеспечивающая дистанционное управление работой холодильных машин с помощью персонального компьютера и интернет соедине-

ния через стандартный браузер; 4 версии: **AERWEB300-6:** Веб-сервер для дистанционного управления максимум 6 установок через интерфейс RS485;

AERWEB300-18: Веб-сервер для дистанционного управления максимум 18 установок через интерфейс RS485;

AERWEB300-6G: Веб-сервер для дистанционного управления максимум 6 установок через интерфейс RS485 со встроенным модемом GPRS;

AERWEB300-18G: Веб-сервер для дистанционного управления максимум 18 установок через интерфейс RS485 со встроенным модемом GPRS.

- MULTICHILLER: Система управления, предназначенная для включения/отключения отдельных холодильных машин, входящих в единую систему и подключенных параллельно. При этом поддерживается постоянный расход воды во всех испарителях.
- **AKW:** «**Акустический пакет»:** Позволяет уменьшить шумность работы машины посредством помещения компрессоров в стальные кожухи с высокоплотной экологичной шумоизоляцией.

Модель HWF		2512°E	2812°E	3212° E	3612°E	4212° E	4812°E	5612°E	6412°E
Холодопроизводительность	kW	540	615	726	816	947	1070	1225	1311
Полн. потребляемая мощность	kW	141	161	189	212	246	278	318	340
Расход воды в испарителе	l/h	92883	105773	124872	140352	162884	184040	210700	225492
Падение давления в испарителе	kPa	30	42	39	32	31	44	49	54
Потребляемый ток	Α	247	278	315	345	416	465	532	579
EER	W/W	3,83	3,82	3,84	3,85	3,85	3,85	3,85	3,86
EER класс (Eurovent)		Α	Α	Α	A	Α	Α	Α	Α
Электропитание					400V-	3-50Hz			
Максимальный ток (FLA)	Α	370	418	468	516	612	690	776	846
Пиковый ток (LRA)	Α	545	613	670	723	892	995	1193	1340
Кол-во. двухвинтовых компрессоров	n°	2	2	2	2	2	2	2	2
Частичная загрузка (электронный ТРВ)	%	35-100	35-100	35-100	35-100	35-100	35-100	35-100	35-100
Кол-во. кожухотрубных испарителей	n°	1	1	1	1	1	1	1	1
Присоед. размеры испарителя (victaulic)	Ø	6"	6"	6"	8"	8"	8"	8"	8"
Звуковая мощность	db(A)	93,6	94	93,5	93,7	94,6	95,5	97,3	97,9
Звуковое давление (1)	db(A)	61,6	62,0	61,5	61,7	62,6	63,5	65,3	65,9
Модель HWF		2512AE	2812AE	3212AE	3612AE	4212AE	4812AE	5612AE	6412AE
Модель HWF Холодопроизводительность	kW	2512AE 577	2812AE 657	3212AE 779	3612AE 873	4212AE 1012	4812AE 1143	5612AE 1263	6412AE 1362
	kW kW								
Холодопроизводительность		577	657	779	873	1012	1143	1263	1362
Холодопроизводительность Полн. потребляемая мощность	kW	577 143	657 162	779 191	873 214	1012 248	1143 280	1263 320	1362 342
Холодопроизводительность Полн. потребляемая мощность Расход воды в испарителе	kW l/h	577 143 99244	657 162 113004	779 191 133988	873 214 150156	1012 248 174064	1143 280 196596	1263 320 217236	1362 342 234264
Холодопроизводительность Полн. потребляемая мощность Расход воды в испарителе Падение давления в испарителе	kW I/h kPa	577 143 99244 35	657 162 113004 48	779 191 133988 47	873 214 150156 33	1012 248 174064 49	1143 280 196596 34	1263 320 217236 32	1362 342 234264 39
Холодопроизводительность Полн. потребляемая мощность Расход воды в испарителе Падение давления в испарителе Потребляемый ток	kW I/h kPa A	577 143 99244 35 249	657 162 113004 48 281	779 191 133988 47 318	873 214 150156 33 348	1012 248 174064 49 418	1143 280 196596 34 467	1263 320 217236 32 534	1362 342 234264 39 581
Холодопроизводительность Полн. потребляемая мощность Расход воды в испарителе Падение давления в испарителе Потребляемый ток EER	kW I/h kPa A	577 143 99244 35 249 4,03	657 162 113004 48 281 4,06	779 191 133988 47 318 4,08	873 214 150156 33 348 4,08 A	1012 248 174064 49 418 4,08	1143 280 196596 34 467 4,08	1263 320 217236 32 534 3,95	1362 342 234264 39 581 3,98
Холодопроизводительность Полн. потребляемая мощность Расход воды в испарителе Падение давления в испарителе Потребляемый ток EER EER класс (Eurovent)	kW I/h kPa A	577 143 99244 35 249 4,03	657 162 113004 48 281 4,06	779 191 133988 47 318 4,08	873 214 150156 33 348 4,08 A	1012 248 174064 49 418 4,08 A	1143 280 196596 34 467 4,08	1263 320 217236 32 534 3,95	1362 342 234264 39 581 3,98
Холодопроизводительность Полн. потребляемая мощность Расход воды в испарителе Падение давления в испарителе Потребляемый ток EER EER класс (Eurovent) Электропитание	kW I/h kPa A W/W	577 143 99244 35 249 4,03 A	657 162 113004 48 281 4,06 A	779 191 133988 47 318 4,08 A	873 214 150156 33 348 4,08 A	1012 248 174064 49 418 4,08 A	1143 280 196596 34 467 4,08 A	1263 320 217236 32 534 3,95 A	1362 342 234264 39 581 3,98 A
Холодопроизводительность Полн. потребляемая мощность Расход воды в испарителе Падение давления в испарителе Потребляемый ток EER EER класс (Eurovent) Электропитание Максимальный ток (FLA)	kW I/h kPa A W/W	577 143 99244 35 249 4,03 A	657 162 113004 48 281 4,06 A	779 191 133988 47 318 4,08 A	873 214 150156 33 348 4,08 A 400V	1012 248 174064 49 418 4,08 A 3-50Hz 612	1143 280 196596 34 467 4,08 A	1263 320 217236 32 534 3,95 A	1362 342 234264 39 581 3,98 A
Холодопроизводительность Полн. потребляемая мощность Расход воды в испарителе Падение давления в испарителе Потребляемый ток EER EER класс (Eurovent) Электропитание Максимальный ток (FLA) Пиковый ток (LRA)	kW I/h kPa A W/W	577 143 99244 35 249 4,03 A	657 162 113004 48 281 4,06 A	779 191 133988 47 318 4,08 A	873 214 150156 33 348 4,08 A 400V-5 516 723	1012 248 174064 49 418 4,08 A 3-50Hz 612 892	1143 280 196596 34 467 4,08 A	1263 320 217236 32 534 3,95 A 776	1362 342 234264 39 581 3,98 A
Холодопроизводительность Полн. потребляемая мощность Расход воды в испарителе Падение давления в испарителе Потребляемый ток EER EER класс (Eurovent) Электропитание Максимальный ток (FLA) Пиковый ток (LRA) Кол-во. двухвинтовых компрессоров	kW I/h kPa A W/W A A n° % n°	577 143 99244 35 249 4,03 A 370 545 2 35-100	657 162 113004 48 281 4,06 A 418 613 2 35-100	779 191 133988 47 318 4,08 A 468 670 2 35-100	873 214 150156 33 348 4,08 A 400V- 516 723 2 35-100	1012 248 174064 49 418 4,08 A 3-50Hz 612 892 2 35-100	1143 280 196596 34 467 4,08 A 690 995 2 35-100	1263 320 217236 32 534 3,95 A 776 1193 2 35-100	1362 342 234264 39 581 3,98 A 846 1340 2 35-100
Холодопроизводительность Полн. потребляемая мощность Расход воды в испарителе Падение давления в испарителе Потребляемый ток EER EER класс (Eurovent) Электропитание Максимальный ток (FLA) Пиковый ток (LRA) Кол-во. двухвинтовых компрессоров Частичная загрузка (электронный ТРВ)	kW I/h kPa A W/W A A n° %	577 143 99244 35 249 4,03 A 370 545 2 35-100	657 162 113004 48 281 4,06 A 418 613 2 35-100	779 191 133988 47 318 4,08 A 468 670 2 35-100	873 214 150156 33 348 4,08 A 400V- 516 723 2 35-100	1012 248 174064 49 418 4,08 A 3-50Hz 612 892 2 35-100	1143 280 196596 34 467 4,08 A 690 995 2 35-100	1263 320 217236 32 534 3,95 A 776 1193 2 35-100	1362 342 234264 39 581 3,98 A 846 1340 2 35-100
Холодопроизводительность Полн. потребляемая мощность Расход воды в испарителе Падение давления в испарителе Потребляемый ток EER EER класс (Eurovent) Электропитание Максимальный ток (FLA) Пиковый ток (LRA) Кол-во. двухвинтовых компрессоров Частичная загрузка (электронный ТРВ) Кол-во. кожухотрубных испарителей	kW I/h kPa A W/W A A n° % n°	577 143 99244 35 249 4,03 A 370 545 2 35-100	657 162 113004 48 281 4,06 A 418 613 2 35-100	779 191 133988 47 318 4,08 A 468 670 2 35-100	873 214 150156 33 348 4,08 A 400V- 516 723 2 35-100	1012 248 174064 49 418 4,08 A 3-50Hz 612 892 2 35-100	1143 280 196596 34 467 4,08 A 690 995 2 35-100	1263 320 217236 32 534 3,95 A 776 1193 2 35-100	1362 342 234264 39 581 3,98 A 846 1340 2 35-100

(1) Звуковое давление измерено в свободном пространстве с фактором направленности Q=2 на расстоянии 10м., согласно стандарту ISO 3744.

Указана производительность машин при следующих условиях:

Режим охлаждения:
- Испаритель (вход/выход) 12°C/7°C
- Температура конденсации (вход/выход) 45°C

Модель WF		2512°E	2812°E	3212° E	3612°E	4212° E	4812°E	5612°E	6412°E
Холодопроизводительность	kW	547	624	748	842	954	1077	1208	1328
Полн. потребляемая мощность	kW	143	162	195	221	247	279	313	345
Расход воды в испарителе	l/h	94084	107328	128656	144824	164088	185244	207776	228416
Падение давления в испарителе	kPa	31	43	41	34	31	44	47	55
Потребляемый ток	Α	242	277	321	363	398	465	516	571
EER		3,83	3,85	3,84	3,81	3,86	3,86	3,86	3,85
EER κλαcc (Eurovent)		А	Α	Α	Α	A	Α	Α	Α
Электропитание					400V-3	3-50Hz			
Максимальный ток (FLA)	Α	294	336	396	446	494	572	636	702
Пиковый ток (LRA)	Α	447	528	596	659	712	872	968	1156
Кол-во. двухвинтовых компрессоров	n°	2	2	2	2	2	2	2	2
Частичная загрузка (электронный ТРВ)	%	35-100	35-100	35-100	35-100	35-100	35-100	35-100	35-100
Кол-во. кожухотрубных испарителей	n°	1	1	1	1	1	1	1	1
Присоед. размеры испарителя (victaulic)	Ø	6"	6"	6"	8"	8"	8"	8"	8"
Звуковая мощность	dB(A)	93,6	94	93,5	93,7	94,6	95,5	97,3	97,9
Звуковое давление (1)	dB(A)	61,6	62	61,5	61,7	62,6	63,5	65,3	65,9
Модель WF		2512AE	2812AE	3212AE	3612AE	4212AE	4812AE	5612AE	6412AE
Модель WF Холодопроизводительность	kW	2512AE 585	2812AE 665	3212AE 800	3612AE 899	4212AE 1016	4812AE 1148	5612AE 1246	6412AE 1382
	kW kW								
Холодопроизводительность		585	665	800	899	1016	1148	1246	1382
Холодопроизводительность Полн. потребляемая мощность	kW	585 143	665 162	800 195	899 221	1016 248	1148 280	1246 313	1382 346
Холодопроизводительность Полн. потребляемая мощность Расход воды в испарителе	kW I/h	585 143 100620	665 162 114380	800 195 137600	899 221 154628	1016 248 174752	1148 280 197456	1246 313 214312	1382 346 237704
Холодопроизводительность Полн. потребляемая мощность Расход воды в испарителе Падение давления в испарителе	kW I/h kPa	585 143 100620 36	665 162 114380 49	800 195 137600 50	899 221 154628 35	1016 248 174752 49	1148 280 197456 34	1246 313 214312 31	1382 346 237704 40
Холодопроизводительность Полн. потребляемая мощность Расход воды в испарителе Падение давления в испарителе Потребляемый ток	kW I/h kPa	585 143 100620 36 242	665 162 114380 49 277	800 195 137600 50 321	899 221 154628 35 363	1016 248 174752 49 400	1148 280 197456 34 465	1246 313 214312 31 518	1382 346 237704 40 573
Холодопроизводительность Полн. потребляемая мощность Расход воды в испарителе Падение давления в испарителе Потребляемый ток EER	kW I/h kPa	585 143 100620 36 242 4,09	665 162 114380 49 277 4,1	800 195 137600 50 321 4,1	899 221 154628 35 363 4,07 A	1016 248 174752 49 400 4,1	1148 280 197456 34 465 4,1	1246 313 214312 31 518 3,98	1382 346 237704 40 573 3,99
Холодопроизводительность Полн. потребляемая мощность Расход воды в испарителе Падение давления в испарителе Потребляемый ток EER EER класс (Eurovent)	kW I/h kPa	585 143 100620 36 242 4,09	665 162 114380 49 277 4,1	800 195 137600 50 321 4,1	899 221 154628 35 363 4,07 A	1016 248 174752 49 400 4,1 A	1148 280 197456 34 465 4,1	1246 313 214312 31 518 3,98	1382 346 237704 40 573 3,99
Холодопроизводительность Полн. потребляемая мощность Расход воды в испарителе Падение давления в испарителе Потребляемый ток EER EER класс (Eurovent) Электропитание	kW I/h kPa A	585 143 100620 36 242 4,09 A	665 162 114380 49 277 4,1 A	800 195 137600 50 321 4,1 A	899 221 154628 35 363 4,07 A 400V-3	1016 248 174752 49 400 4,1 A	1148 280 197456 34 465 4,1 A	1246 313 214312 31 518 3,98 A	1382 346 237704 40 573 3,99 A
Холодопроизводительность Полн. потребляемая мощность Расход воды в испарителе Падение давления в испарителе Потребляемый ток EER EER класс (Eurovent) Электропитание Максимальный ток (FLA)	kW I/h kPa A	585 143 100620 36 242 4,09 A	665 162 114380 49 277 4,1 A	800 195 137600 50 321 4,1 A	899 221 154628 35 363 4,07 A 400V-:	1016 248 174752 49 400 4,1 A 3-50Hz	1148 280 197456 34 465 4,1 A	1246 313 214312 31 518 3,98 A	1382 346 237704 40 573 3,99 A
Холодопроизводительность Полн. потребляемая мощность Расход воды в испарителе Падение давления в испарителе Потребляемый ток EER EER класс (Eurovent) Электропитание Максимальный ток (FLA) Пиковый ток (LRA)	kW I/h kPa A A A	585 143 100620 36 242 4,09 A	665 162 114380 49 277 4,1 A	800 195 137600 50 321 4,1 A	899 221 154628 35 363 4,07 A 400V-3 446 659	1016 248 174752 49 400 4,1 A 3-50Hz 494	1148 280 197456 34 465 4,1 A	1246 313 214312 31 518 3,98 A	1382 346 237704 40 573 3,99 A
Холодопроизводительность Полн. потребляемая мощность Расход воды в испарителе Падение давления в испарителе Потребляемый ток EER EER класс (Eurovent) Электропитание Максимальный ток (FLA) Пиковый ток (LRA) Кол-во. двухвинтовых компрессоров	kW I/h kPa A A A n° % n°	585 143 100620 36 242 4,09 A 294 447 2 35-100	665 162 114380 49 277 4,1 A 336 528 2 35-100	800 195 137600 50 321 4,1 A 396 596 2 35-100	899 221 154628 35 363 4,07 A 400V-5 446 659	1016 248 174752 49 400 4,1 A 3-50Hz 494 712 2	1148 280 197456 34 465 4,1 A 572 872	1246 313 214312 31 518 3,98 A 636 968 2	1382 346 237704 40 573 3,99 A 702 1156
Холодопроизводительность Полн. потребляемая мощность Расход воды в испарителе Падение давления в испарителе Потребляемый ток EER EER класс (Eurovent) Электропитание Максимальный ток (FLA) Пиковый ток (LRA) Кол-во. двухвинтовых компрессоров Частичная загрузка (электронный ТРВ)	kW I/h kPa A A A n° %	585 143 100620 36 242 4,09 A 294 447 2	665 162 114380 49 277 4,1 A 336 528 2 35-100	800 195 137600 50 321 4,1 A 396 596 2 35-100	899 221 154628 35 363 4,07 A 400V-5 446 659	1016 248 174752 49 400 4,1 A 3-50Hz 494 712 2 35-100	1148 280 197456 34 465 4,1 A 572 872 2 35-100	1246 313 214312 31 518 3,98 A 636 968 2	1382 346 237704 40 573 3,99 A 702 1156
Холодопроизводительность Полн. потребляемая мощность Расход воды в испарителе Падение давления в испарителе Потребляемый ток EER EER класс (Eurovent) Электропитание Максимальный ток (FLA) Пиковый ток (LRA) Кол-во. двухвинтовых компрессоров Частичная загрузка (электронный ТРВ) Кол-во. кожухотрубных испарителей	kW I/h kPa A A A n° % n°	585 143 100620 36 242 4,09 A 294 447 2 35-100	665 162 114380 49 277 4,1 A 336 528 2 35-100	800 195 137600 50 321 4,1 A 396 596 2 35-100	899 221 154628 35 363 4,07 A 400V-3 446 659 2 35-100	1016 248 174752 49 400 4,1 A 3-50Hz 494 712 2 35-100	1148 280 197456 34 465 4,1 A 572 872 2 35-100	1246 313 214312 31 518 3,98 A 636 968 2 35-100	1382 346 237704 40 573 3,99 A 702 1156 2 35-100

MEC-W

Агрегатированные кондиционеры с водяным охлаждением и центробежными вентиляторами производительностью от 11 до 55 кВт

R407C

Особенности

- Пять типоразмеров.
- Все модели рассчитаны на работу с хладагентом R407C.
- Стальной корпус с полиуретановым покрытием, нанесенным с использованием порошковой технологии с тепло и звукоизоляцией.
- Центробежные вентиляторы.
- Четырехрядные теплообменники с медными трубками и алюминиевым оребрением.
- Моющиеся воздушные фильтры.
- Термостат системы регулировки температуры в помещении с одним или двумя контактами (в зависимости от модели).
- Герметичные компрессоры.
- Конденсаторы «Труба в трубе».
- Вентиль регулировки подачи воды, автоматически регулируемый в зависимости от давления конденсации.

Дополнительное оборудование

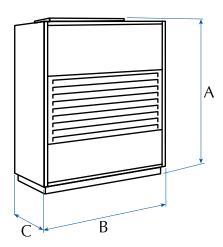
BAS: Калорифер с тремя рядами медных трубок и алюминиевым оребрением.

PL: Воздухораспределительное устройство, включающее решетку с двумя рядами регулируемых створок и внутренним покрытием из звукоизолирующего материала.

	Совмести	мость дополнительно	ого оборудования		
Mod.	307 W	507 W	757 W	1007 W	1507 W
BAS 30	<u> </u>				
BAS 50		<u> </u>			
BAS 75			<i>'</i>		-
BAS 100				V	,
3AS 150					V
3AS 200					
3AS 300					
PL 22	V				
PL 23		<u> </u>			
PL 26			V		•
PL 37				<u> </u>	
PL 38				-	
PL 39					
PL 300					

Mod. MEC		307 W	507 W	757 W	1007 W	1507 W
Холодопроизводительность	kW	11	18	29	35	55
Потребляемая мощность	kW	3.05	4.45	7.3	8.5	13.7
Расход воды при 30 °C	l/h	2350	3740	5900	7270	11270
Падение давления	kPa	38	65	56	65	53
Расход воды при 16 °C	l/h	620	990	1550	1910	2970
Падение давления*	kPa	3.5	6.7	5	5.3	5
Теплопроизводительность (BAS)	kW	25.28	46.61	58.01	78.59	113.68
Падение давления (BAS)	kPa	3.47	4.01	3.97	4.59	5.77
Колво рядов теплообменника	n.	4	4	4	4	4
Номинальный расход воздуха	m³/h	2040	3400	5100	6800	10200
Звуковое давление	dB (A)	63	65.5	72.5	69.5	73.5
Мощность электродвигателя	kW	0.375	0.75	1.125	1.5	1.125
6	rpm (min.)	840	840	840	620	840
Скорость	rpm (max.)	1120	1120	1120	810	1120
A	mm (min.)	79	79	79	79	79
Диаметр шкива мотора	mm (max.)	104	104	104	104	104
Диаметр шкива вентилятора	mm	130	130	130	180	130
Pagyo A pop AVV2	m³/h (min.)	1600	2750	4100	5500	8200
Расход воздуха	m³/h (max.)	2400	4100	6000	8200	12000
Потребляемый ток	A (230 V)	12.2	15.4	24.2	30.8	46.6
потреодяемый ток	A (400 V)	6	8.9	13.9	17.8	26.9
Пиковый ток	A (230 V)	98	142	168	157	190
I IVINODDIVI TUK	A (400 V)	48	68	101	77	115

Электропитание: 3фазное ~ 230В 50Гц; 3фазное ~ 400В 50Гц.


Указанные технические характеристики относятся к следующим условиям: Звуковое давление измерено в полуреверберационной испытательной камере объемом $85\ \text{м3}\ \text{с}$ временем реверберации $\text{Tr}=0.5\ \text{c}.$

- Охлаждение:
 температура воздуха в помещении 27°С (по сухому
 термометру), 19°С (по мокрому термометру);

– температура наружного воздуха 40°C ; – * температура в конденсаторе 35°C .

Нагрев: температура воды на входе 85°C; температура всасываемого воздуха 15°C.

Размеры (мм)

Mod.		307 W	507 W	757 W	1007 W	1507 W
Высота	A	1290	1410	1680	1700	1745
Ширина	В	900	1040	1220	1450	1880
Глубина	С	494	558	648	723	753
Macca	kg	147	184	273	335	484

SAP

Гидромодули емкостью от 75 до 3500 литров.

Особенности

- Баки аккумуляторы, уже укомплектованные водяным насосом, предназначены для использования в сочетании с холодильными машинами; трубопроводные соединения выполняются монтажными организациями.
- Емкость баков соответствует системам Aermec NSW, NRA, R, RV, RVB и т. д. различных типоразмеров. Тем не менее, баки могут использоваться в комбинации и с любыми другими холодильными машинами.
- Стальной корпус с эпоксидным покрытием, нанесенным с использованием порошковой технологии, гарантирует высокую стойкость по отношению к погодным факторам окружающей среды.

- Центробежные насосы с крыльчаткой из нержавеющей стали.
- Клапан защиты от избыточного давления.Термомагнитные размыкатели в цепи
- электродвигателей насосов.
 Баки SAP 0075 и 0150 могут быть укомплектованы насосами пяти различных
 моделей, рассчитанными на расход воды
 до 18000 л/час и на давление до 140 кПа
 (внутри системы может быть установле-
- но не более двух насосов).

 ◆ SAP 0300, 0500, 0501, 0750 и 1000 могут быть укомплектованы насосами восьми различных моделей, рассчитанными на расход воды до 60000 л/час и на давление до 200 кПа (возможна конфигурация системы, включающая резервный насос).
- Бак соответствующего размера выбирается в соответствии с теническими данными производителя.
- SAP 1500, 2500 и 3500 могут быть укомплектованы насосами десяти различных моделей, рассчитанными на расход воды до 200000 л/час и на давление до 300 кПа (возможна конфигурация системы, включающая резервный насос). Бак соответствующего размера выбирается в соответствии с техничскими данными производителя.

Дополнительное оборудование

AVX: AVX выбирается в соответствии с таблицей совместимости оборудования, приведенной в техническом описании.

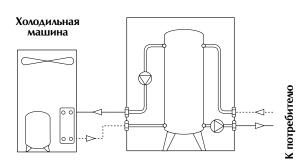
RX – **RVX**: Погружной электронагреватель, монтируемый в имеющемся в баке отвер-

стии и управляемый термостатом.

В зимнее время нагреватель предотвращает замерзание воды в баке.

Устанавливается в процессе изготовления бакана заводе.

VT: Вибропоглощающие элементы крепления; четыре таких элемента монтируются в нижней части бака.


Совм	естимость	дополн	ительн	ого
		/довани:		
SAP	RX	RXV	VT 2	VT 8
0075	<i>'</i>			
0150	~			~
0300	~		~	
0500 - 0501	~		~	
0750	~		~	
1000	~		~	
1500		~		
2500		~		
3500		~		

		Технич	еская и	размер	ная сов	вместим	ОСТЬ			
SAP	0075	0150	0300	0500	0501	0750	1000	1500	2500	3500
NBW 142 - 202	~	~								
NRA			V	~						
R 05 - 06					~	~				
R 07 Standard					~	~				
R 07 A - H	·						V			
R 08 - 10 - 12							V			

Совместимость с моделями RV, RVB и NW определяется в соответствии с техническим описанием соответствующих агрегатов

ОДНОКОНТУРНАЯ Холодильная машина К потребителю ·--<

ДВУХКОНТУРНАЯ

Технические характеристики

Модель SAP	,	0075	0150	0300	0500	0501
Емкость	1	75	150	300	500	500
Емкость расширительного бака	1	8	12	18	24	24
Давл. срабатывания предохр. клапана	bar	6	6	6	6	6
Тип трубопроводного соединения	(1)	F	F	F	F	F
Диаметр трубопроводного соединения		1" 1/4	1" 1/2	2"	2" 1/2	2" 1/2

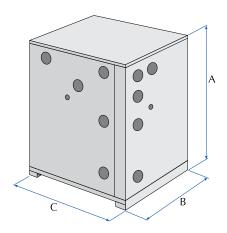
Модель SAP		0750	1000	1500	2500	3500
Емкость	1	750	1000	1500	2500	3500
Емкость расширительного бака	1	18 x 2	18 x 2	24 x 2	24 x 3	24 x 3
Давл. срабатывания предохр. клапана	bar	6	6	6	6	6
Тип трубопроводного соединения	(1)	F	F			
Диаметр трубопроводного соединения		3"	3"			

Модель насоса	R	T	U	V	X	Y	W	K	J	I	
1500 фланцы (*)	125	125	150	150	150	150	200	200	200	200	
2500 фланцы (*)	125	125	150	150	150	150	200	200	200	200	
3500 фланцы (*)	125	125	150	150	150	150	200	200	200	200	

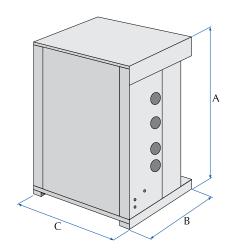
Электропитание = 3 фазы \sim 400В, 50Гц $^{(1)}$ F = подсоединение отверстие с внутренней резьбой (Дюймовой)

^(*) PN16UNI2278

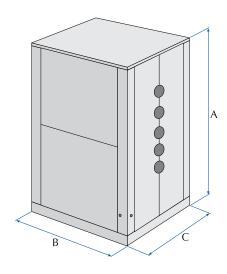
Мощность электромоторов	насо	СОВ											
Hacoc		A	В	С	E	F	G	Н	I	J	K	L	M
Мах. Потребляемая мощность	W	275	330	614	895	1070	1550	2050	22000	17500	14500	3100	4100
Мах. потребляемый ток	A	0.5	0.69	1.1	1.6	1.9	2.8	3.6	43	36.4	30	5.6	7.2
Hacoc				N	P	Q	R	T	U	V	W	\mathbf{X}	Y
Мах. Потребляемая мощность	W			1470	2600	5200	4000	5200	5800	8000	11500	9000	11000
Мах. потребляемый ток	A			2.6	4.4	8.8	8.5	11.5	15.5	15.5	22.5	22.5	22.5

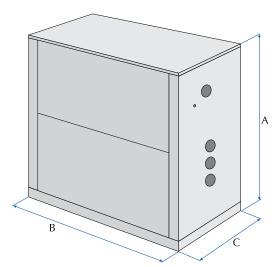

Комбинация насосов												
SAP 0075	AC	AE	AF	AZ	ВС	BE	BF	BZ	ZC	ZE	ZF	ZZ
CAROLEO	AC	AE	AF	AZ	ВС	BE	BF	BZ	CC	CE	CF	CZ
SAP 0150	EC	EE	EF	EZ	FC	FE	FF	FZ	ZC	ZE	ZF	ZZ
SAP 0300						CS	CZ	ES	EZ	FS	FZ	ZZ
SAP 0500				FS	FZ	GS	GZ	HS	HZ	PS	PZ	ZZ
SAP 0501				FS	FZ	GS	GZ	HS	HZ	PS	PZ	ZZ
CAD 0750				FS	FZ	GS	GZ	HS	HZ	LS	LZ	MS
SAP 0750					MZ	NS	NZ	PS	PZ	QS	QZ	ZZ
SAP 1000				LS	LZ	MS	MZ	NS	NZ	QS	QZ	ZZ
CAD 1500		IS	IZ	JS	JZ	KS	KZ	RS	RZ	TS	TZ	US
SAP 1500			UZ	VS	VZ	WS	WZ	XS	XZ	YS	YZ	ZZ
64 P 2500		IS	IZ	JS	JZ	KS	KZ	RS	RZ	TS	TZ	US
SAP 2500			UZ	VS	VZ	WS	WZ	XS	XZ	YS	YZ	ZZ
64 P 2500	•	IS	IZ	JS	JZ	KS	KZ	RS	RZ	TS	TZ	US
SAP 3500			UZ	VS	VZ	WS	WZ	XS	XZ	YS	YZ	ZZ

Обозначения:


Обозначения:
Первая буква – первичный контур;
вторая буква – вторичный контур;
А, В – многоскоростной водяной насос;
L, M, Q – система со сдвоенными насосами;
S – система с резервным насосом;
Z – отсутсвие насоса в соответсвующем контуре.

Комбинации, указанные в таблице, – единственно возможные. Возможно большое число различных сочетаний значений расхода воды и развиваемого насосом давления (см. техническую документацию).


SAP 0075 - 0150


SAP 0300 - 0500

SAP 0501 - 0750

SAP 1000 - 1500 - 2500 - 3500

SAP		0075	0150	0300	0500	0501	0750	1000	1500	2500	3500
Высота	A	1000	1000	1650	1650	1968	1968	2049	2049	2049	2049
Ширина	В	1000	1000	1100	1100	1550	1550	2200	2200	2200	2200
Глубина	С	700	700	1100	1100	1000	1000	1000	1750	2000	2300
Macca	kø	120	120	190	230	310	400	445	560	710	790

ΓRA

Градирни для охлаждения воды производительностью от 49,53 до 1084,88 кВт

Особенности

- Семнадцать типоразмеров.
- Корпус из армированного стекловолокна со специальным теплоизоляционным покрытием, стойким по отношению к ультрафиолетовому излучению и погодным условиям.
- Для трех наиболее крупных типоразмеров (ТRA 850, 950, 1100) - несущая конструкция из оцинкованной листовой стали толщиной 22 мм с двухслойными панелями из армированного стекловолокна, заполненными вспененным синтетическим материалом. Такая конструкция обеспечивает высокую механическую прочность, значительно снижает уровень шума, возникающий при циркуляции воды, защищаетот
- воздействия ультрафиолетового излучения и атмосферных факторов.
- Теплообменник и сепаратор-влагоотделитель из негорючего синтетического материала на основе поливинилхлорида.
- Водораспределительные трубы из поливинилхлорида с полипропиленовыми форсунками.
- Наличие ареометра. Если система не оборудована специальным водомерным прибором, это устройство дает возможность приблизительно определить расход воды в циркуляционной системе по значению падения давления в насадках трубопроводов.
- Пластиковый кран для слива воды.
- Высокоэффективный вентилятор аксиаль-

- ной конструкции с несколькими лопастями.
- Дренажный поддон из многослойного водостойкого армированного стекловолокна на основе полиэстера.
- Защитная решетка из стали AISI 304 на выходе вентиляторного агрегата.
- Модификация с пониженным уровнем шума за счет применения вентилятора с меньшей скоростью вращения и большим числом лопастей. (В этом варианте не применяется двухскоростной электромотор привода вентилятора.)
- Двухскоростной электромотор с регулировкой скорости по команде термостата.

Дополнительное оборудование*

OBL: смотровое окно.

PISP: инспекционный люк увеличенного размера (800 х 600 мм) с рамой и крепеж-

ными болтами из нержавеющей стали. RT: нагревательный элемент с регулиро-

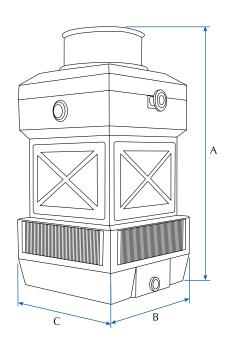
вочным термостатом.

	Совместимость дополнительного оборудования																
TRA	50	70	90	110	130	170	200	240	300	400	500	550	600	750	850	950	1100
RT 11 (1 kW)	~	~	~	~	~												
RT 12 (2 kW)						~	~	~	~								
RT 13 (3 kW)										~	~	~					
RT 15 (5 kW)													~	~	~	~	
RT 17 (7.5 kW)																	~

Примечание: В скобках указана мощность электронагревательных элементов.

⁼ необходимое дополнительное оборудование и желательная модификация градирни указываются при оформлении заказа.

Mod. TRA		50	70	90	110	130	170	200	240	300
Производительность	kW	49.53	69.06	88.60	107.44	125.58	168.14	197.67	242.09	302.33
Расход воздуха	m³/h	4300	7100	7100	7100	12000	12000	17000	17000	26000
Расход воды	l/h	7100	9900	12700	15400	18000	24100	28330	34700	43300
Падение давления	kPa	42	32	52	32	42	28	35	23	40
Число полюсов эл.мотора	kW	0.55	0.75	0.75	0.75	1.1	1.1	1.5	1.5	2.2
Число полюсов	n.	4	4	4	4	6	6	6	6	6
Число полюсов (двойна полярность)	n.	4/8	4/8	4/8	4/8	6/12	6/12	6/8	6/8	6/8
Число вентиляторов	n.	1	1	1	1	1	1	1	1	1
Число форсунок	n.	1	1	1	1	1	1	1	4	4
Звуковое давление	dB (A)	52	52	54	54	54	54	54	55	55


Mod. TRA		400	500	550	600	750	850	950	1100
Производительность	kW	405.35	488.37	574.19	604.88	767.44	856.74	941.86	1084.88
Расход воздуха	m³/h	26000	36000	45000	45000	59000	59000	59000	70000
Расход воды	l/h	58100	70000	82300	86700	110000	122800	135000	155500
Падение давления	kPa	28	40	55	30	48	49	25	32
Мощность электромотора	kW	2.2	4	4	4	5.5	5.5	5.5	7.5
Число полюсов эл.мотора	n.	6	6	6	6	8	8	8	8
Число полюсов (двойна полярность	s) n.	6/8	6/12	6/12	6/12	8/16	8/16	8/16	8/16
Число вентиляторов	n.	1	1	1	1	1	1	1	1
Число форсунок	n.	4	4	4	9	9	16	16	16
Звуковое давление	dB (A)	57	57	58	61	61	62	62	64
Звуковое давление (silenced version	n) dB (A)						56	56	57

Электропитание: трехфазное: 230 В, 50 Гц; трехфазное с нейтральной шиной, 400 В, 50 Гц

Приведенные характеристики относятся к следующим условиям:

Звуковое давление измерено в свободном пространстве на расстоянии 10 м при коэффициенте направленности, равном 2. - температура воздуха на входе 23.5 °C по сухому термометру; - температура воды на входе 29 °C - температура воды на выходе 29 °C

Размеры (мм)

Mod. TRA		50	70	90	110	130	170	200	240	300	400	500	550	600	750	850	950	1100
Высота	A	2110	2110	2595	2595	2595	2800	2800	2860	2860	3140	3140	3380	3450	3450	3685	3685	3685
Ширина	В	800	800	1000	1000	1000	1200	1200	1400	1400	1740	1740	1900	2100	2100	2025	2025	2360
Глубина	С	800	800	1000	1000	1000	1200	1200	1400	1400	1740	1740	2100	2300	2300	2360	2360	2380
Macca	kg	75	75	85	95	95	170	170	210	210	410	410	500	555	580	850	815	915

CSE-CDR-CVA-CVS-CVR

Теплообменники (Конденсаторы)

Характеристики

Модель CSE

Общие характеристики:

- Модульность является приоритетом при разработке: каждая установка сделана из стандартных секций, чьи элементы легко могут быть разобраны
- Начиная с типоразмера CSE 563 для машин с диаметром вентиляторов 500 мм, и с типоразмера CSE 663 для машин с диаметром вентиляторов 630 мм, данные установки изготавливаются из двух блоков, распложенных «бок к боку», что делает вертикальную установку этих машин невозможной. Все остальные машины данной серии могут устанавливаться как горизонтально, так и вертикально.
- Для облегчения электрических соединений, все моторы вентиляторов подключены на заводе-изготовителе (исключая машины с диаметром вентилятора 350 мм), выведены на электрический щит, расположенный со стороны коллекторов и защищены легко демонтируемой крышкой.

Характеристики конструкции:

- Машины разработаны для наружной установки и обеспечивают превосходную работу в различных атмосферных условиях.
- Теплообменники с медными трубками, расположенными в шахматном порядке с профилированным алюминиевым оребрением. Теплообменники фиксированы враспор так чтобы избежать повреждения трубок в результате вибрации.
- Медные коллекторы с патрубками под пайку, запечатаны, чтобы предотвратить попадание загрязнений и влаги внутрь контура.
- Последнее поколение осевых вентиляторов гарантирует тихую работу и высокую производительность, уровень защиты IP54. Вентиляторы могут работать при различных типах подключения («треугольник»/«звезда»), а также могут иметь различную полюсность и позволяют иметь плавное регулирование скорости вращения вентиляторов с помощью уменьшения напряжения.

• Доступные модификации:

- (В) Стандартная;
- (S) С пониженным уровнем шума;
- (Е) Очень тихая.

Модель CDR

Общие характеристики:

- Сдвоенный теплообменник V-образной формы.
- Два независимых холодильных контура.

- Вентиляторы диаметром 800 мм расположены в два ряда.
- От 6 до 10 вентиляторов
- Отдельный отсек для каждого вентилятора.

Характеристики конструкции:

- Машины разработаны для наружной установки и обеспечивают превосходную работу в различных атмосферных условиях.
- Высокоэффективные теплообменники с оребрением.
- Последнее поколение осевых вентиляторов гарантирует тихую работу и высокую производительность, уровень защиты IP54. В стандартном исполнении машины поставляются с вентиляторами, подключенными к электрическому щиту. Раздельный расход воздуха для каждого вентилятора.

• Доступные модификации:

(ВТ) Стандартная с 6-и полюсными моторами; (ST) С пониженным уровнем шума, с 8-и полюсными моторами;

(ЕТ) Очень тихая, с 12-и полюсными моторами.

Модель CVA

Общие характеристики:

- Теплообменники W-образной формы.
- Низкошумные.
- Вентиляторы диаметром 800 мм расположены в два ряда.
- От 6 до 8 вентиляторов.

Характеристики конструкции:

- Машины разработаны для наружной установки и обеспечивают превосходную работу в различных атмосферных условиях.
- 4 высокоэффективных теплообменника с оребрением.
- Последнее поколение осевых вентиляторов гарантирует тихую работу и высокую производительность, уровень защиты IP54. В стандартном исполнении машины поставляются с вентиляторами, подключенными к электрическому щиту. Раздельный расход воздуха для каждого вентилятора.

• Доступные модификации:

(ВТ) Стандартная с 6-и полосными моторами; (ST) С пониженным уровнем шума, с 8-и полюсными моторами;

Модель CVS

Общие характеристики:

- Сдвоенный теплообменник V-образной формы.
- Вентиляторы диаметром 500 мм.
- От 2 до 5 вентиляторов.
- Отдельный отсек для каждого вентилятора.

Характеристики конструкции:

- Машины разработаны для наружной установки и обеспечивают превосходную работу в различных атмосферных условиях.
- Высокоэффективные теплообменники с оребрением.
- Последнее поколение осевых вентиляторов гарантирует тихую работу и высокую производительность, уровень защиты IP54. В стандартном исполнении машины поставляются с вентиляторами, подключенными к электрическому щиту. Раздельный расход воздуха для каждого вентилятора. Малые габаритные размеры позволяют устанавливать машины этой серии в стесненных пространствах; самый высокий показатель удельной мощности на квадратный метр занимаемой площади.

• Доступные модификации:

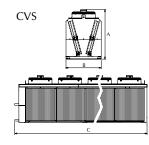
(ВТ) Стандартная с 4-х полюсными моторами; (ST) С пониженным уровнем шума, с 6-и полюсными моторами;

Модель CVR

Общие характеристики:

- Сдвоенный теплообменник V-образной формы.
- Вентиляторы диаметром 800 мм.
- От 2 до 5 вентиляторов.
- Отдельный отсек для каждого вентилятора.

Характеристики конструкции:


- Машины разработаны для наружной установки и обеспечивают превосходную работу в различных атмосферных условиях.
- Высокоэффективные теплообменники с оребрением.
- Последнее поколение осевых вентиляторов гарантирует тихую работу и высокую производительность, уровень защиты IP54. В стандартном исполнении машины поставляются с вентиляторами, подключенными к электрическому щиту. Раздельный расход воздуха для каждого вентилятора. Малые габаритные размеры позволяют устанавливать машины этой серии в стесненных пространствах; самый высокий показатель удельной мощности на квадратный метр занимаемой площади.

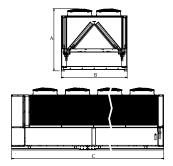
• Доступные модификации:

(ВТ) Стандартная с 6-х полюсными моторами; (ST) С пониженным уровнем шума, с 8-и полюсными моторами;

(ЕТ) Очень тихая, с 12-и полюсными моторами.

CSE Модели	Диаметр	Вен.	Ряды [кол-		Мощность	Уровень	Размеры	[MM]	
	—— вен. [дм]	[шт]	во.]	воздуха [м3/ч]	[кВт]	шума dB(A)	A	В	С
CSE312BM	3	1	2	2500	7.7	36	820	620	760
CSE314BM	3	1	4	2400	9.4	36	820	620	760
CSE322BM	3	2	2	5000	16	39	820	620	760
CSE322SM	3	2	2	3000	11	29	820	620	1310
CSE323SM	3	2	3	2600	12	29	820	620	1310
CSE332SM	3	3	2	4500	17	31	820	620	1860
CSE513BT	5	1	3	7750	22	48	1060	833	1105
CSE514BT	5	1	4	7400	25	48	1060	833	1105
CSE524BT	5	2	4	14800	50	51	1060	833	2045
CSE514ST	5	1	4	4850	19	38	1060	833	1105
CSE515BT	5	1	5	7100	27	48	1060	833	1105
CSE523BT	5	2	3	15500	43	51	1060	833	2045
CSE523ST(Y)	5	2	3	7800	28	34	1060	833	2045
CSE524BT	5	2	4	14800	50	51	1060	833	2045
CSE524BT(Y)	5	2	4	11000	41	45	1060	833	2045
CSE525BT	5	2	5	14200	54	51	1060	833	2045
CSE525ST	5	2	5	9200	40	41	1060	833	2045
CSE535BT	5	3	5	21300	82	53	1060	833	2985
CSE613BT	6	1	3	9550	30	49	1200	1033	1340
CSE613ET	6	1	3	4450	19	32	1200	1033	1340
CSE614BT	6	1	4	9150	38	49	1200	1033	1340
CSE615BT	6	1	5	8700	37	49	1200	1033	1340
CSE623BT	6	2	3	19100	61	52	1200	1033	2500

CVR


CDR

CVR models	Диаметр	Вен.	Ряды	Расход	Мощность	Уровень	Размеры [/	им]	
	вен. [дм]	[шт]	[кол-во.]	воздуха [м3/ч]	[кВт]	шума dB(A)	A	В	С
CVR823ST	8	2	3	34500	126	43	1590	1100	2270
CVR823BT	8	2	3	47500	163	51	1590	1100	2270
CVR823BT(Y)	8	2	3	37500	131	44	1590	1100	2270
CVR824BT	8	2	4	46000	181	51	1590	1100	2270
CVR833BT	8	3	3	72000	245	53	1590	1100	3210
CVR834BT	8	3	4	68500	272	53	1590	1100	3210
CVR834BT(Y)	8	3	4	55000	210	46	1590	1100	3210
CVR843BT	8	4	3	96000	327	54	1590	1100	4180
CVR843BT(Y)	8	4	3	55000	210	46	1590	1100	4180
CVR843ST(Y)	8	4	3	53500	203	40	1590	1100	4180
CVR843ET(Y)	8	4	3	33000	146	32	1590	1100	4180
CVR843ET	8	4	3	44250	179	36	1590	1100	4180
CVR844BT	8	4	3	91000	363	54	1590	1100	4180
CVR853BT	8	5	3	120000	408	55	1590	1100	5150
CVR853ST	8	5	3	86000	315	47	1590	1100	5150
CVR853ST(Y)	8	5	3	68000	253	41	1590	1100	5150
CVR853ET	8	5	3	55100	220	37	1590	1100	5150
CVR853ET(Y)	8	5	3	41200	183	33	1590	1100	5150
CVR854BT(Y)	8	5	4	90000	350	48	1590	1100	5150
CVR854BT	8	5	4	115000	454	55	1590	1100	5150

CDR models	Диаметр	Вен.	Ряды	Расход	Мощность	Уровень	Размерь	ы [мм]	
	вен. [дм]	[шт]	[кол-во.]	воздуха [м3/ч]	[кВт]	шума dB(A)	A	В	С
CDR864ST	8	6	4	84000	354	48	2150	2160	3240
CDR883BT	8	8	3	163600	545	57	2150	2160	4210
CDR883ST	8	8	3	117000	443	49	2150	2160	4210
CDR883ET	8	8	3	71700	302	39	2150	2160	4210
CDR884BT	8	8	4	150000	595	57	2150	2160	4210
CDR884ST(Y)	8	8	4	83000	353	43	2150	2160	4210
CDR8103BT	8	10	3	204500	685	58	2150	2160	5180
CDR8103ST	8	10	3	145000	554	50	2150	2160	5180
CDR8104BT	8	10	4	192700	744	58	2150	2160	5180
CDR8104ST	8	10	4	140000	590	50	2150	2160	5180

CVA models	Диаметр	Вен.	Ряды	Расход	Мощность	Уровень	Размеры [мм]		
	вен. [дм]	[шт]	[кол-во.]	воздуха [м3/ч]	[кВт]	шума dB(A)	A	В	С	
CVA864BT	8	6	4	112000	458	56	2090	2200	3850	
CVA883ST	8	8	3	116000	440	49	2105	2200	5100	
CVA884ST	8	8	4	110000	467	49	2105	2200	5100	

Электропитание: 1 ~ 230В 50Гц; 3 ~ 400В 50Гц. (Y) = подключение типа «звезда» ***Δ**T = 18 °C

Указанные технические характеристики относятся к следующим

- условиям:
 Звуковое давление измерено в открытом пространстве на расстоянии 10 м. с коэффициентом направленности Q = 2;
 Температура окружающей среды 25 °C

- Разность между температурой конденсации (Tc) и температурой наружного воздуха $\Delta t = 15$ °C; Высота над уровнем моря: 0 метров.

WTE-WTR-WDR-WTS-WTA

Теплообменники (Сухие охладители)

Особенности

Модель WTE

Общие характеристики:

- Модульность является приоритетом при разработке: каждая установка сделана из стандартных секций, чьи элементы легко могут быть разобраны.
- Начиная с типоразмера CSE 563 для машин с диаметром вентиляторов 500 мм, и с типоразмера CSE 663 для машин с диаметром вентиляторов 630 мм, данные установки изготавливаются из двух блоков, распложенных «бок к боку», что делает вертикальную установку этих машин невозможной. Все остальные машины данной серии могут устанавливаться как горизонтально, так и вертикально. Поставляемые в комплекте ножки могут быть использованы в обоих случаях.
- Для облегчения электрических соединений, все моторы вентиляторов подключены на заводе-изготовителе (исключая машины с диаметром вентилятора 350 мм), выведены на электрический щит, расположенный со стороны коллекторов и защищены легко демонтируемой крышкой.

Характеристики конструкции:

- Машины разработаны для наружной установки и обеспечивают превосходную работу в различных атмосферных условиях.
- Теплообменники с медными трубками, расположенными в шахматном порядке с профилированным алюминиевым оребрением. Теплообменники фиксированы враспор так, чтобы избежать повреждения трубок в результате вибрации.
- Стальные коллекторы и патрубки с дюймовой резьбой.
- Последнее поколение осевых вентиляторов гарантирует тихую работу и высокую производительность, уровень защиты IP54.
 Вентиляторы могут работать при различных типах подключения («треугольник»/«звезда»), а также могут иметь различную полюсность и позволяют иметь плавное регулирование скорости вращения вентиляторов с помощью уменьшения напряжения.

• Доступные модификации:

- (В) Стандартная;
- (S) С пониженным уровнем шума;
- (Е) Очень тихая.

Модель WTA

Общие характеристики:

• Теплообменники W-образной формы

- Два независимых контура охлаждения
- Два ряда вентиляторов с диаметром 800 мм.
- От 4 до 16 вентиляторов
- Отдельный отсек для каждого вентилятора. Характеристики конструкции:
- Машины разработаны для наружной установки и обеспечивают превосходную работу в различных атмосферных условиях.
- Высокоэффективные теплообменники с оребрением.
- Последнее поколение осевых вентиляторов гарантирует тихую работу и высокую производительность, уровень защиты IP54. В стандартном исполнении машины поставляются с вентиляторами, подключенными к шкафу управления. Разделитель воздушного потока для каждого отдельного вентилятора.

• Доступные модификации:

(ВТ) Стандартная с 6-и полюсными моторами; (ST) С пониженным уровнем шума, с 8-и полюсными моторами;

(ET) Очень тихая, с 12-и полюсными моторами. **Модель WTR**

Общие характеристики:

- Теплообменник V-образной формы.
- Два независимых охлаждающих контура.
- Низкий уровень шума.
- Два ряда вентиляторов с диаметром 800 мм.
- От 4 до 10 вентиляторов.

Характеристики конструкции:

- Машины разработаны для наружной установки и обеспечивают превосходную работу в различных атмосферных условиях.
- Высокоэффективные теплообменники с оребрением.
- Последнее поколение осевых вентиляторов гарантирует тихую работу и высокую производительность, уровень защиты IP54. В стандартном исполнении машины поставляются с вентиляторами, подключенными к шкафу управления. Разделитель воздушного потока для каждого отдельного вентилятора.

• Доступные модификации:

(ВТ) Стандартная с 6-и полюсными моторами; (ST) С пониженным уровнем шума, с 8-и полюсными моторами;

(ЕТ) Очень тихая, с 12-и полюсными моторами.

Модель WTS Общие характеристики:

Два теплообменника V-образной формы.

- Вентиляторы диаметром 500 мм.
- От 2 до 5 вентиляторов.

- Отдельный отсек для каждого вентилятора. Характеристики конструкции:
- Машины разработаны для наружной установки и обеспечивают превосходную работу в различных атмосферных условиях.
- Высокоэффективные теплообменники с оребрением.
- Последнее поколение осевых вентиляторов гарантирует тихую работу и высокую производительность, уровень защиты IP54. В стандартном исполнении машины поставляются с вентиляторами, подключенными к электрическому щиту. Раздельный расход воздуха для каждого вентилятора. Малые габаритные размеры позволяют устанавливать машины это серии в стесненных пространствах; самый высокий показатель удельной мощности на квадратный метр занимаемой плошади.

• Доступные модификации:

(ВТ) Стандартная с 4-и полюсными моторами; (ST) С пониженным уровнем шума, с 6-и полюсными моторами;

(ЕТ) Очень тихая, с 8-и полюсными моторами. Модель WTR

Общие характеристики:

- Два теплообменника V-образной формы.
- Вентиляторы диаметром 800 мм.
- От 2 до 5 вентиляторов.
- Отдельный отсек для каждого вентилятора.

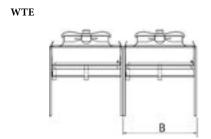
Характеристики конструкции:

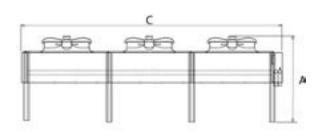
- Машины разработаны для наружной установки и обеспечивают превосходную работу в различных атмосферных условиях.
- Высокоэффективные теплообменники с оребрением.
- Последнее поколение осевых вентиляторов гарантирует тихую работу и высокую производительность, уровень защиты IP54. В стандартном исполнении машины поставляются с вентиляторами, подключенными к электрическому щиту. Раздельный расход воздуха для каждого вентилятора. Малые габаритные размеры позволяют устанавливать машины этой серии в стесненных пространствах; самый высокий показатель удельной мощности на квадратный метр занимаемой площади.

• Доступные модификации:

(ВТ) Стандартная с 6-и полюсными моторами; (ST) С пониженным уровнем шума, с 8-и полюсными моторами;

(ЕТ) Очень тихая, с 12-и полюсными моторами.


Выбор модификации

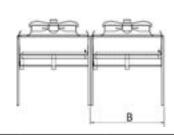

1-2-3	4	5	6	7	8
Драйкуллер	∅ вентиляторов [дм]	Кол-во. вентиляторов	Кол-во. рядов	Модификация	Электропитание
WTE	3/5/6/9	1/2/3/4/6/8	2/3/4/5	B/S/E	T – трёхфазное
WTS	5	2/3/4/5	3/4	B/S	T – трёхфазное
WTR	8	2/3/4/5	3/4	B/S/E	Т – трёхфазное
WTA	8	4/6/8/10/12/14/16	3/4	B/S/E	T – трёхфазное
WDR	8	4/6/8/10	3/4	B/S/E	Т – трёхфазное

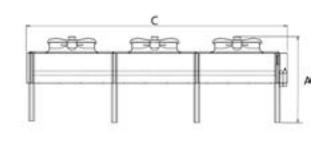
Комбинации моделей

Для облегчения выбора дракуллера мы подготовили таблицы с возможными комбинациями драйкуллеров с NRW, NBW, WSA, WSB. Указанные комбинации требуют обязательного использования устройств регулирования частоты оборотов вентиляторов, а также щитов управления для гарантировано правильной работы при изменяющихся условиях наружного воздуха.

Технические характеристики и размеры

WTE Модели	∅ вентиляторов —[дм]	Вентиляторы [шт]		Мощность [кВт]	Уровень шума dB(A)		Размеры [мм		
	— [ДМ]	гшт	кол-во-ј	[M3/4]	נומאן	UD(A)	A	В	С
WTE 312 BM	3	1	2	2500	4,6	36	820	620	760
WTE 313 BM	3	1	3	2200	6	36	820	620	760
WTE 314 BM	3	1	4	2400	7,4	36	820	620	760
WTE 322 BM	3	2	3	5000	9,2	39	820	620	1310
WTE 323 BM	3	2	3	4400	12	39	820	620	1310
WTE 324 BM	3	2	4	4800	15	39	820	620	1310
WTE 332 BM	3	3	2	7500	14	41	820	620	1860
WTE 333 BM	3	3	3	6600	18	41	820	620	1860
WTE 334 BM	3	3	4	7200	22	41	820	620	1860
WTE 342 BM	3	4	2	10000	18	42	820	1200	1310
WTE 343 BM	3	4	3	8800	24	42	820	1200	1310
WTE 344 BM	3	4	4	9600	30	42	820	1200	1310
WTE 362 BM	3	6	2	15000	28	44	820	1200	1860
WTE 363 BM	3	6	3	13200	38	44	820	1200	1860
WTE 364 BM	3	6	4	14400	47	44	820	1200	1860
WTE 312 SM	3	1	2	1500	3,6	26	820	620	760
WTE 313 SM	3	1	3	1300	4,4	26	820	620	760
WTE 314 SM	3	1	4	1400	5	26	820	620	760
WTE 322 SM	3	2	3	3000	7,4	29	820	620	1310
WTE 323 SM	3	2	3	2600	9	29	820	620	1310
WTE 324 SM	3	2	4	2800	10	29	820	620	1310
WTE 332 SM	3	3	2	4500	11	31	820	620	1860
WTE 333 SM	3	3	3	3900	14	31	820	620	1860
WTE 334 SM	3	3	4	4200	16	31	820	620	1860
WTE 342 SM	3	4	2	6000	15	32	820	1200	1310
WTE 343 SM	3	4	3	5200	18	32	820	1200	1310
WTE 344 SM	3	4	4	5600	20	32	820	1200	1310
WTE 362 SM	3	6	2	9000	24	34	820	1200	1860
WTE 363 SM	3	6	3	7800	28	34	820	1200	1860
WTE 364 SM	3	6	4	8400	32	34	820	1200	1860
WTE 513 BT	5	1	3	7750	17	48	1060	833	1105
WTE 514 BT	5	1	4	7400	20	48	1060	833	1105
WTE 515 BT	5	1	5	7100	23	48	1060	833	1105
WTE 522 BT	5	2	2	16000	26	51	1060	833	2045
WTE 523 BT	5	2	3	15500	35	51	1060	833	2045
WTE 524 BT	5	2	4	14800	42	51	1060	833	2045


Указанные технические характеристики относятся к следующим


- Температура окружающей среды TA = 25 °C Температура воды на входе TWI = 40 °C Температура воды на выходе TWO = 35 °C

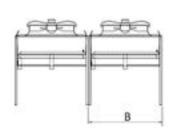
- Процентное содержание гликоля в воде = 34%

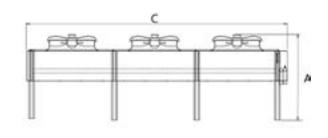
- Звуковое давление измерено в свободном пространстве на расстоянии 10 м. при коэффициенте направленности = 2.

WTE

WTE Модели	Ø вентиляторов	Вентиляторы	Ряды	Расход воздуха	Мощность	Уровень шума	F	Размеры [л	λΜ]
	 [дм]	[шт]	кол-во.]	[м3/ч]	[кВт]	dB(A)	A	В	C
WTE 525 BT	5	2	5	14200	47	51	1060	833	2045
WTE 533 BT	5	3	3	23250	54	53	1060	833	2985
WTE 534 BT	5	3	4	22200	63	53	1060	833	2985
WTE 535 BT	5	3	5	21300	70	53	1060	833	2985
WTE 543 BT	5	4	3	31000	71	54	1060	833	3925
WTE 544 BT	5	4	4	29600	83	54	1060	833	3925
WTE 545 BT	5	4	5	28400	96	54	1060	833	3925
WTE 563 BT	5	6	3	46500	108	56	1060	833	2985
WTE 564 BT	5	6	4	44400	126	56	1060	833	2985
WTE 565 BT	5	6	5	42600	140	56	1060	833	2985
WTE 583 BT	5	8	3	62000	142	57	1060	833	3925
WTE 584 BT	5	8	4	59200	166	57	1060	833	3925
WTE 585 BT	5	8	5	56800	192	57	1060	833	3925
W 1E 303 D1		0		30000	172		1000	033	
WTE 513 ST	5	1	3	5100	13	38	1060	833	1105
WTE 514 ST	5	1	4	4850	11	38	1060	833	1105
WTE 514 ST	5	1	5	4600	17	38	1060	833	1105
WTE 522 ST	5	2	2	10650	21	41	1060	833	2045
WTE 523 ST	5	2	3	10200	27	41	1060	833	2045
WTE 523 ST WTE 524 ST	5				_				
WTE 524 ST	5	2	5	9700 9200	32 34	41 41	1060 1060	833	2045 2045
W 1E 525 S1	5		5	9200	34	41	1060	833	2045
MTE FOR CT	F	2	2	15200	41	42	1060	022	2005
WTE 533 ST	5	3	3	15300	41	43	1060	833	2985
WTE 534 ST	5	3	4	14550	48	43	1060	833	2985
WTE 535 ST	5	3	5	13800	52	43	1060	833	2985
WTE 543 ST	5	4	3	20400	56	44	1060	833	3925
WTE 544 ST	5	4	4	19400	64	44	1060	833	3925
WTE 545 ST	5	4	5	18400	69	44	1060	833	3925
WTE 563 ST	5	6	3	30600	82	46	1060	833	2985
WTE 564 ST	5	6	4	29100	96	46	1060	833	2985
WTE 565 ST	5	6	5	27600	104	46	1060	833	2985
WTE 583 ST	5	8	3	40800	112	47	1060	833	3925
WTE 584 ST	5	8	4	38800	129	47	1060	833	3925
WTE 585 ST	5	8	5	36800	139	47	1060	833	3925
WTE 513 ET	5	1	3	3350	10	32	1060	833	1105
WTE 514 ET	5	1	4	3200	11	32	1060	833	1105
WTE 515 ET	5	1	5	3000	12	32	1060	833	1105
WTE 522 ET	5	2	2	7300	17	35	1060	833	2045
WTE 523 ET	5	2	3	6700	21	35	1060	833	2045
WTE 524 ET	5	2	4	6400	24	35	1060	833	2045
WTE 525 ET	5	2	5	6000	25	35	1060	833	2045
WTE 533 ET	5	3	3	10050	31	37	1060	833	2985
WTE 534 ET	5	3	4	9600	36	37	1060	833	2985
WTE 535 ET	5	3	5	9000	38	37	1060	833	2985
WTE 543 ET	5	4	3	13400	42	38	1060	833	3925
WTE 544 ET	5	4	4	12800	48	38	1060	833	3925
WTE 545 ET	5	4	5	12000	50	38	1060	833	3925
WTE 563 ET	5	6	3	20100	63	40	1060	833	2985
WTE 564 ET	5	6	4	19200	72	40	1060	833	2985
WTE 565 ET	5	6	5	18000	75	40	1060	833	2985
WTE 583 ET	5	8	3	26800	84	41	1060	833	3925
WTE 584 ET	5	8	4	25600	97	41	1060	833	3925
WTE 585 ET	5	8	5	24000	100	41	1060	833	3925
WTE 513 BM	5	1	3	7360	16	45	1060	833	1105
WTE 514 BM	5	1	4	7030	20	45	1060	833	1105
WTE 514 BM	5	1	5	6745	22	45	1060	833	1105
WTE 522 BM	5	5	5	15200	26	48	1060	833	2045
WTE 522 BM	5	2	3	14720	34	48	1060	833	2045
WTE 523 BM WTE 524 BM	5	2	4	14060	41	48	1060	833	2045
WTE 524 BM WTE 525 BM	5		5		45		1060		2045
WTE 533 BM	5	3	3	13490		48 50	1060	833	2985
VV 1 E 333 DIVI	<u> </u>	3	J	22080	52	30	1000	833	

Указанные технические характеристики относятся к следующим условиям:


- Температура окружающей среды TA = 25 °C
- Температура воды на входе TWI = 40 °C
- Температура воды на выходе TWO = 35 °C


WTE Модели	Ø вентиляторов	иляторов Вентиляторы Р			Уровень шума	Размеры [мм]			
	[дм]	[шт]	кол-во.]	[м3/ч]	[кВт]	dB(A)	Α	В	С
WTE 534 BM	5	3	4	21090	61	50	1060	833	2985
WTE 535 BM	5	3	5	20235	67	50	1060	833	2985
WTE 543 BM	5	4	3	29440	69	51	1060	833	3925
WTE 544 BM	5	4	4	28120	80	51	1060	833	3925
WTE 545 BM	<u>5</u> 5	4	3	26980	92	51 53	1060	833	3925 2985
WTE 563 BM WTE 564 BM	5	6	4	44160 42180	104 122	53	1060 1060	833 833	2985
WTE 565 BM	5	6	5	40470	135	53	1060	833	2985
WTE 583 BM	5	8	3	58880	137	54	1060	833	3925
WTE 584 BM	5	8	4	56240	160	54	1060	833	3925
WTE 585 BM	5	8	5	53960	185	54	1060	833	3925
WTE 513 SM	5	1	3	5000	13	35	1060	833	1105
WTE 514 SM	5	1	4	4750	15	35	1060	833	1105
WTE 515 SM	5	1	5	4510	17	35	1060	833	1105
WTE 522 SM	5	2	2	10440	21	38	1060	833	2045
WTE 523 SM	5	2	3	10000	27	38	1060	833	2045
WTE 524 SM WTE 525 SM	<u>5</u> 5	2	5	9500 9020	31 34	38 38	1060 1060	833 833	2045 2045
WTE 533 SM	5	3	3	15000	40	40	1060	833	2985
WTE 534 SM	5	3	4	14250	47	40	1060	833	2985
WTE 535 SM	5	3	5	15350	51	40	1060	833	2985
WTE 543 SM	5	4	3	20000	55	41	1060	833	3925
WTE 544 SM	5	4	4	19000	65	41	1060	833	3925
WTE 545 SM	<u>5</u> 5	4	5	18040	68	41	1060	833	3925
WTE 563 SM WTE 564 SM	5	6	4	30000 28500	95 95	43 43	1060 1060	833 833	2985 2985
WTE 565 SM	5	6	5	27060	102	43	1060	833	2985
WTE 583 SM	5	8	3	40000	111	44	1060	833	3925
WTE 584 SM	5	8	4	38000	127	44	1060	833	3925
WTE 585 SM	5	8	5	36080	136	44	1060	833	3925
WTE 513 EM	5	1	3	3720	11	32	1060	833	1105
WTE 513 EM	5	1	4	3550	12	32	1060	833	1105
WTE 515 EM	5	1	5	3330	13	32	1060	833	1105
WTE 522 EM	5	2	2	8100	18	35	1060	833	2045
WTE 523 EM	5	2	3	7440	22	35	1060	833	2045
WTE 524 EM	5	2	4	7100	25	35	1060	833	2045
WTE 525 EM	5	2	5	6660	27	35	1060	833	2045
WTE 533 EM	<u>5</u> 5	3	3	11160	34	37 37	1060	833 833	2985 2985
WTE 534 EM WTE 535 EM	5	3	5	10650 9990	38 41	37	1060 1060	833	2985
WTE 543 EM	5	4	3	14880	45	38	1060	833	3925
WTE 544 EM	5	4	4	14200	51	38	1060	833	3925
WTE 545 EM	5	4	5	13320	55	38	1060	833	3925
WTE 563 EM	5	6	3	22320	68	40	1060	833	2985
WTE 564 EM	5	6	4	21300	76	40	1060	833	2985
WTE 565 EM	5	6	5	19980	82	10	1060	833	2985
WTE 583 EM WTE 584 EM	<u>5</u> 5	8	4	29760 28400	90	41 41	1060 1060	833 833	3925 3925
WTE 584 EM	5	8	5	26640	109	41	1060	833	3925
WTE 613 BT	6	1	3	9550	23	49	1200	1033	1340
WTE 614 BT	6	1	4	9150	28	49	1200	1033	1340
WTE 615 BT WTE 623 BT	6	2	3	8700 19100	31 48	49 52	1200 1200	1033 1033	1340 2500
WTE 623 BT	6	5	4	18300	<u>48</u> 56	52	1200	1033	2500
WTE 625 BT	6	2	5	17400	62	52	1200	1033	2500
WTE 633 BT	6	3	3	28650	74	54	1200	1033	3660
WTE 634 BT	6	3	4	27450	85	54	1200	1033	3660
WTE 635 BT	6	3	5	26100	93	54	1200	1033	3660
WTE 643 BT	6	4	3	38200	98	55	1200	1033	4820
WTE 644 BT	6	4	5	36600	113	55 	1200	1033	4820
WTE 645 BT WTE 663 BT	6	6	3	34800 57300	123 147	55 57	1200 1200	1033 1033	4820 3660
WTE 664 BT	6	6	4	54900	171	57	1200	1033	3660
WTE 665 BT	6	6	5	52200	186	57	1200	1033	3660
WTE 683 BT	6	8	3	76400	195	58	1200	1033	4820
		8	4	73200	226	58	1200	1033	4820
WTE 684 BT	6								
WTE 684 BT WTE 685 BT	6	8	5	69600	246	58	1200	1033	4820
WTE 684 BT WTE 685 BT	6	8	5						
WTE 684 BT				69600 6750 6500	246 19 22	58 42 42	1200 1200 1200	1033 1033 1033	1340 1340

Указанные технические характеристики относятся к следующим условиям:

- Температура окружающей среды TA = 25 °C
- Температура воды на входе TWI = 40 °C
- Температура воды на выходе TWO = 35 °C

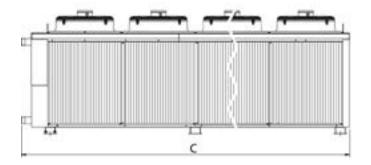
WTE

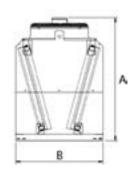
WTE Модели	 ∅ вентиляторов	Вентиляторы	Ряды	Расход воздуха [м3/ч]	Мощность	Уровень шума	Размеры [мм]		
• •	[дм]	[шт]	кол-во.]		[кВт]	dB(A)	Α	В	Ċ
LATER COO OFF				12500	20		1200	1000	2500
WTE 623 ST	6	2	3	13500	38	45	1200	1033	2500
WTE 624 ST WTE 625 ST	6	2	5	13000 12400	45 48	45 45	1200 1200	1033 1033	2500 2500
WTE 633 ST	6	3	3	20250	58	45	1200	1033	3660
WTE 634 ST	6	3	4	19500	67	47	1200	1033	3660
WTE 635 ST	6	3	5	18600	73	47	1200	1033	3660
WTE 643 ST	6	4	3	27000	77	48	1200	1033	4820
WTE 644 ST	6	4	4	26000	88	48	1200	1033	4820
WTE 645 ST	6	4	5	24800	98	48	1200	1033	4820
WTE 663 ST	6	6	3	40500	116	50	1200	1033	3660
WTE 664 ST	6	6	4	39000	134	50	1200	1033	3660
WTE 665 ST	6	6	5	37200	147	50	1200	1033	3660
WTE 683 ST	6	8	3	54000	154	51	1200	1033	4820
WTE 684 ST	6	8	4	52000	177	51	1200	1033	4820
WTE 685 ST	6	8	5	49600	196	51	1200	1033	4820
WTE 613 ET	6	1	3	4450	14	32	1200	1033	1340
WTE 614 ET	6	1	4	4300	16	32	1200	1033	1340
WTE 615 ET	6	1	5	4050	17	32	1200	1033	1340
WTE 623 ET	6	2	3	8900	29	35	1200	1033	2500
WTE 624 ET	6	2	4	8600	33	35	1200	1033	2500
WTE 625 ET	6	2	5	8100	35	35	1200	1033	2500
WTE 633 ET	6	3	3	13350	44	37	1200	1033	3660
WTE 634 ET	6	3	4	12900	50	37	1200	1033	3660
WTE 635 ET	6	3	5	12150	53	37	1200	1033	3660
WTE 643 ET WTE 644 ET	6	4	4	17800 17200	59 67	38 38	1200 1200	1033 1033	4820 4820
WTE 645 ET	6	4	5	16200	69	38	1200	1033	4820
WTE 663 ET	6	6	3	26700	89	40	1200	1033	3660
WTE 664 ET	6	6	4	25800	100	40	1200	1033	3660
WTE 665 ET	6	6	5	24300	105	40	1200	1033	3660
WTE 683 ET	6	8	3	35600	118	41	1200	1033	4820
WTE 684 ET	6	8	4	34400	133	41	1200	1033	4820
WTE 685 ET	6	8	5	32400	139	41	1200	1033	4820
WTE 913 BT	9	1	3	20400	47	56	1530	1434	1633
WTE 914 BT	9	1	4	19350	55	56	1530	1434	1633
WTE 916 BT	9	1	6	17700	65	56	1530	1434	1633
WTE 923 BT	9	2	3	40800	96	59	1530	1434	3063
WTE 924 BT	9	2	4	38700	111	59	1530	1434	3063
WTE 926 BT	9	2	6	35400	133	59	1530	1434	3063
WTE 933 BT	9	3	3	61200	144	61	1530	1434	4493
WTE 934 BT	9	3	4	58050	168	61	1530	1434	4493
WTE 936 BT	9	3	6	53100	195	61	1530	1434	4493
WTE 943 BT	9	4	3	81600	191	62	1530	1434	3063
WTE 944 BT	9	4	4	77400	223	62	1530	1434	3063
WTE 946 BT	9	4	6	70800	267	62	1530	1434	3063
WTE 963 BT	9	6	3	122400	289	64	1530	1434	4493
WTE 964 BT WTE 966 BT	9	6	6	116100 106200	335 390	64 64	1530 1530	1434 1434	4493 4493
				100200			1330	1474	
WTE 913 ST	9	1	3	15000	39	50	1530	1434	1633
WTE 914 ST	9	1	4	14050	45	50	1530	1434	1633
WTE 916 ST	9	1	6	12900	51	50	1530	1434	1633
WTE 923 ST	9	2	3	30000	78	53	1530	1434	3063
WTE 924 ST	9	2	4	28100	91	53	1530	1434	3063
WTE 926 ST	9	2	6	25800	104	53	1530	1434	3063
WTE 933 ST	9	3	3	45000	118	55 55	1530	1434	4493
WTE 934 ST WTE 936 ST	9	3	6	42150 38700	133 158	55	1530 1530	1434 1434	4493 4493
WTE 943 ST	9	4	3	60000	156	56	1530	1434	3063
WTE 944 ST	9	4	4	56200	183	56	1530	1434	3063
			4	20200	100	50	1000	1474	5005
WTE 946 ST	9	4	6	51600	208	56	1530	1434	3063

Технические характеристики и размеры

WTE Модели	Ø вентиляторов	Вентиляторы	Ряды	Расход воздуха	Мощность	Уровень шума		Размеры [
	 [дм]	[шт]	кол-во.]	[м3/ч]	[кВт]	dB(A)	Α	В	C
WTE 964 ST	9	6	4	84300	267	58	1530	1434	4493
WTE 966 ST	9	6	6	77400	316	58	1530	1434	4493
WTE 913 ET	9	1	3	9200	28	38	1530	1434	1633
WTE 914 ET	9	1	4	8600	32	38	1530	1434	1633
WTE 916 ET	9	1	6	7800	35	38	1530	1434	1633
WTE 923 ET	9	2	3	18400	57	41	1530	1434	3063
WTE 924 ET	9	2	4	17200	65	41	1530	1434	3063
WTE 926 ET	9	2	6	15600	70	41	1530	1434	3063
WTE 933 ET	9	3	3	27600	87	43	1530	1434	4493
WTE 934 ET	9	3	4	25800	96	43	1530	1434	4493
WTE 936 ET	9	3	6	23400	106	43	1530	1434	4493
WTE 943 ET	9	4	3	36800	115	44	1530	1434	3063
WTE 944 ET	9	4	4	34400	129	44	1530	1434	3063
WTE 946 ET	9	4	6	31200	141	44	1530	1434	3063
WTE 963 ET	9	6	3	55200	174	46	1530	1434	4493
WTE 964 ET	9	6	4	51600	193	46	1530	1434	4493
WTE 966 ET	9	6	6	46800	212	46	1530	1434	4493

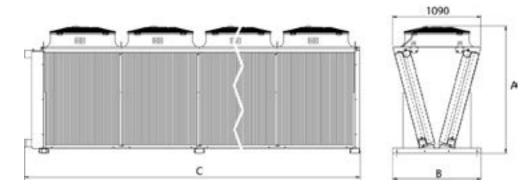
Указанные технические характеристики относятся к следующим указанные технические характеристики отно условиям:


- Температура окружающей среды TA = 25 °C


- Температура воды на входе TWI = 40 °C

- Температура воды на выходе TWO = 35 °C

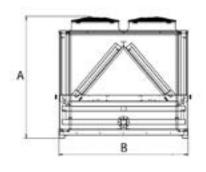
- Процентное содержание гликоля в воде = 34%
 Звуковое давление измерено в свободном пространстве на расстоянии 10 м. при коэффициенте направленности = 2.

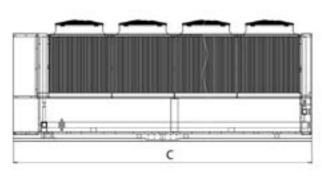

WTE Модели	Ø венти∧яторов	Вентиляторы	Ряды	Расход воздуха	Мощность	Уровень шума		Размеры [MM]
	 [дм]	[шт]	кол-во.]	[м3/ч]	[кВт]	dB(A)	A	В	C
WTS 523 BT	5	2	3	15800	46	51	1065	780	1610
WTS 524 BT	5	2	4	15200	51	51	1065	780	1610
WTS 533 BT	5	3	3	23700	69	53	1065	780	2265
WTS 534 BT	5	3	4	22800	77	53	1065	780	2265
WTS 543 BT	5	4	3	31600	92	54	1065	780	2920
WTS 544 BT	5	4	4	30400	103	54	1065	780	2920
WTS 553 BT	5	5	3	39500	115	55	1065	780	3575
WTS 554 BT	5	5	4	38000	128	55	1065	780	3575
WTS 523 ST	5	2	3	10400	38	41	1065	780	1610
WTS 524 ST	5	2	4	10000	41	41	1065	780	1610
WTS 533 ST	5	3	3	15600	57	43	1065	780	2265
WTS 534 ST	5	3	4	15000	62	43	1065	780	2265
WTS 543 ST	5	4	3	20800	76	44	1065	780	2920
WTS 544 ST	5	4	4	20000	82	44	1065	780	2920
WTS 553 ST	5	5	3	26000	95	45	1065	780	3575
WTS 554 ST	5	5	4	25000	103	45	1065	780	3575
WTS 523 ET	5	2	3	6800	27	34	1065	780	1610
WTS 524 ET	5	2	4	6500	29	34	1065	780	1610
WTS 533 ET	5	3	3	10200	41	36	1065	780	2265
WTS 534 ET	5	3	4	9750	44	36	1065	780	2265
WTS 543 ET	5	4	3	13600	54	37	1065	780	2920
WTS 544 ET	5	4	4	13000	58	37	1065	780	2920
WTS 553 ET	5	5	3	17000	66	38	1065	780	3575
WTS 554 ET	5	5	4	16250	71	38	1065	780	3575

Указанные технические характеристики относятся к следующим условиям:

- Температура окружающей среды TA = 25 °C Температура воды на входе TWI = 40 °C Температура воды на выходе TWO = 35 °C

- Процентное содержание гликоля в воде = 34%
- Звуковое давление измерено в свободном пространстве на расстоянии 10 м. при коэффициенте направленности = 2.


WTR



WTE Модели	∅ венти∧яторов	Вентиляторы	Ряды	Расход воздуха	Мощность	Уровень шума	F	Размеры [л	ıΜ]
	_ [дм]	[шт]	кол-во.]	[м3/ч]	[кВт]	dB(A)	Α	В	С
WTR 823 BT	8	2	3	46000	131	51	1590	1100	2270
WTR 824 BT	8	2	4	45000	150	51	1590	1100	2270
WTR 833 BT	8	3	3	70000	204	53	1590	1100	3210
WTR 834 BT	8	3	4	66000	229	53	1590	1100	3210
WTR 843 BT	8	4	3	92000	275	54	1590	1100	4180
WTR 844 BT	8	4	4	88500	307	54	1590	1100	4180
WTR 853 BT	8	5	3	114000	338	55	1590	1100	5150
WTR 854 BT	8	5	4	112000	390	55	1590	1100	5150
WTR 823 ST	8	2	3	34000	112	43	1590	1100	2270
WTR 824 ST	8	2	4	32000	122	43	1590	1100	2270
WTR 833 ST	8	3	3	50500	167	45	1590	1100	3210
WTR 834 ST	8	3	4	48000	183	45	1590	1100	3210
WTR 843 ST	8	4	3	67000	223	46	1590	1100	4180
WTR 844 ST	8	4	4	63000	240	46	1590	1100	4180
WTR 853 ST	8	5	3	83500	279	47	1590	1100	5150
WTR 854 ST	8	5	4	80000	298	47	1590	1100	5150
WTR 823 ET	8	2	3	21100	79	33	1590	1100	2270
WTR 833 ET	8	3	3	31750	121	35	1590	1100	3210
WTR 843 ET	8	4	3	42300	162	36	1590	1100	4180
WTR 853 ET	8	5	3	52900	203	37	1590	1100	5150

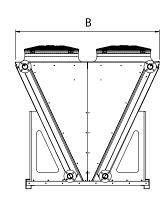
- Указанные технические характеристики относятся к следующим условиям:
 Температура окружающей среды TA = 25 °C Процентное содержание гликоля в воде = 34% Звуковое давление измерено в свободном пространстве на расстоянии 10 м. при коэффициенте направленности = 2.

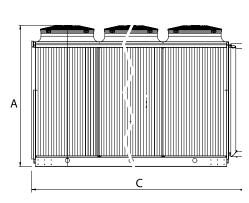
WTA

WTE Модели	Ø вентиляторов	Вентиляторы	Ряды	Расход воздуха	Мощность	Уровень шума		Размеры [ы [мм]	
	 [дм]	[шт]	кол-во.]	[м3/ч]	[кВт]	dB(A)	Α	В	C	
WTA 843 BT	8	4	3	84000	283	54	2090	2200	3250	
WTA 844 BT	8	4	4	82000	314	54	2090	2200	3250	
WTA 863 BT	8	6	3	122000	391	56	2090	2200	3850	
WTA 864 BT	8	6	4	112000	422	56	2090	2200	3850	
WTA 883 BT	8	8	3	165000	525	57	2090	2200	5100	
WTA 884 BT	8	8	4	153000	569	57	2090	2200	5100	
WTA 8103 BT	8	10	3	205000	674	58	2090	2200	8100	
WTA 8104 BT	8	10	4	190000	736	58	2090	2200	8100	
WTA 8123 BT	8	12	3	242000	782	59	2090	2200	8700	
WTA 8124 BT	8	12	4	222000	844	59	2090	2200	8700	
WTA 8143 BT	8	14	3	282000	916	59	2090	2200	9950	
WTA 8144 BT	8	14	4	258000	991	59	2090	2200	9950	
WTA 8163 BT	8	16	3	324000	1050	60	2090	2200	11200	
WTA 8164 BT	8	16	4	296000	1138	60	2090	2200	11200	

условиям:
- Температура окружающей среды TA = 25 °C
- Температура воды на входе TWI = 40 °C
- Температура воды на выходе TWO = 35 °C

- Указанные технические характеристики относятся к следующим условиям:
 Температура окружающей среды TA=25 °C
 Температура окружающей среды TA=25 °C
 Температура окружающей среды TA=25 °C


Технические характеристики и размеры


WTE Модели	Ø вентиляторов	Вентиляторы	Ряды	Расход воздуха	Мощность	Уровень шума	F	Размеры [/	MM]
	 [дм]	[шт]	кол-во.]	[м3/ч]	[кВт]	dB(A)	Α	В	C
WTA 843 ST	8	4	3	62000	220	46	2090	2200	3250
WTA 844 ST	8	4	4	60000	236	46	2090	2200	3250
WTA 863 ST	8	6	3	87000	297	48	2090	2200	3850
WTA 864 ST	8	6	4	82000	316	48	2090	2200	3850
WTA 883 ST	8	8	3	116000	398	49	2090	2200	5100
WTA 884 ST	8	8	4	110000	424	49	2090	2200	5100
WTA 8103 ST	8	10	3	147000	517	50	2090	2200	8100
WTA 8104 ST	8	10	4	142000	551	50	2090	2200	8100
WTA 8123 ST	8	12	3	170000	593	51	2090	2200	8700
WTA 8124 ST	8	12	4	162000	632	51	2090	2200	8700
WTA 8143 ST	8	14	3	202000	694	51	2090	2200	9950
WTA 8144 ST	8	14	4	187000	739	51	2090	2200	9950
WTA 8163 ST	8	16	3	230000	796	52	2090	2200	11200
WTA 8164 ST	8	16	4	215000	847	52	2090	2200	11200
WTA 843 ET	8	4	6	37400	159	36	2090	2200	3250
WTA 863 ET	8	6	3	52500	218	38	2090	2200	3850
WTA 883 ET	8	8	3	70300	292	39	2090	2200	5100
WTA 8103 ET	8	10	3	89900	377	40	2090	2200	8100
WTA 8123 ET	8	12	3	105100	436	41	2090	2200	8700
WTA 8143 ET	8	14	3	122800	510	41	2090	2200	9950
WTA 8163 ET	8	16	3	140600	584	42	2090	2200	11200

- условиям:
 Температура окружающей среды TA = 25 °C
 Температура воды на входе TWI = 40 °C
 Температура воды на выходе TWO = 35 °C

Указанные технические характеристики относятся к следующим - Процентное содержание гликоля в воде = 34% условиям: - Звуковое давление измерено в свободном пространстве на расстоянии 10 м. при коэффициенте направленности = 2.

WDR

WTE Модели	Ø вентиляторов	Вентиляторы	Ряды	Расход воздуха	Мощность	Уровень шума		Размеры [мм]
	 [дм]	[шт]	кол-во.]	[м3/ч]	[кВт]	dB(A)	A	В	C
WDR 843 BT	8	4	3	77100	232	54	2150	1850	2270
WDR 844 BT	8	4	4	70400	254	54	2150	1850	2270
WDR 863 BT	8	6	3	115700	349	56	2150	1850	3240
WDR 864 BT	8	6	4	105500	381	56	2150	1850	3240
WDR 883 BT	8	8	3	154200	467	57	2150	1850	4210
WDR 884 BT	8	8	4	140700	508	57	2150	1850	4210
WDR 8103 BT	8	10	3	192800	583	58	2150	1850	5180
WDR 8104 BT	8	10	4	176000	635	58	2150	1850	5180
WDR 843 ST	8	4	3	55000	188	46	2150	1850	2270
WDR 844 ST	8	4	4	50000	203	46	2150	1850	2270
WDR 863 ST	8	6	3	82000	286	48	2150	1850	3240
WDR 864 ST	8	6	4	74500	301	48	2150	1850	3240
WDR 883 ST	8	8	3	110000	384	49	2150	1850	4210
WDR 884 ST	8	8	4	99000	405	49	2150	1850	4210
WDR 8103 ST	8	10	3	136000	476	50	2150	1850	5180
WDR 8104 ST	8	10	4	125000	507	50	2150	1850	5180
WDR 843 ET	8	4	3	33350	137	36	2150	1850	2270
WDR 863 ET	8	6	3	49900	206	38	2150	1850	3240
WDR 883 ET	8	8	3	66600	274	39	2150	1850	4210
WDR 8103 ET	8	10	3	83250	343	40	2150	1850	5180

Указанные технические характеристики относятся к следующим условиям:

- Температура окружающей среды TA = 25 °C

- Температура воды на входе TWI = 40 °C

- Температура воды на выходе TWO = 35 °C